Industry Catalogue

Industry Current \&
Voltage Transducers

兴"LEM

FM solutions for electrical measurements

This catalogue summarizes the most common LEM product offerings for industrial, railway, high accuracy, and automotive measurements.

LEM is the market leader in providing innovative and high quality solutions for measuring electrical parameters. Its core products current and voltage transducers - are used in a broad range of applications including drives \& welding, renewable energies \& .
With higher accuracy and speed, the feedback signal from LEM transducers enables smoother control and energy consumption reduction of many electrical systems.

In most lifts installed worldwide, LEM transducers prevent the doors closing on passengers. They keep the cabin stable when people enter, and ensure that the lift rides smoothly by adjusting the torque of the motor.
At the heart of ... RENEWABLE ENERGIES

LEM transducers, specifically designed for renewable power systems, control the flow and waverm of energy sent to the grid from photovoltaic and other renewable energy systems. They measure the current to help the windmills and solar installations to work at their maximum efficiency
At the heart of ... TRACTION

Regardless of whether a train is powered by diesel or electricity, traction is provided by electric motors driven by inverters that are relying on LEM transducers to measure, optimize and adjust the power that is sent to the motors, improving both performance and reliability.

The quality of the image provided by MRI scanners is linked directly to the accuracy of the current measurement.
The current transducer used has a direct impact on the image and if the transducer is not precise enough this will blurred and illegible image. LEM current transducers set a standard for accuracy and are the most precise industrial products in the market today. The transducers provide levels of stability and precision, at about $1-3$ parts per million, which makes them references in calibration test benches or in laboratories.

In electric and hybrid vehicles, LEM transducers monitor energy levels to and from the battery and are critical in the control of the electric motors
It is our business to support you with both standard and customized products to optimize your application.

DRIVES \& WEL DING MARKE

Today, the transducer market has two main technology drivers: first, the desire for a greater degree of comfort and finer regulation, and second, the need to save energy. This means that more and more applications that used to be mechanical are changing to fully electronic control which provides increased reliability, improved regulation and higher energy efficiency
Today, about 15% of all motors have an inverter control. This inverter can save 50% of the total energy consumed, which is a huge potential for savings
The inverter control used in these newer systems requires reliable, accurate current measurement to enable engineers to Energy savings is the key word current measurement directly on the motor phases.
these renewable sources, in the most profitibs includes the exploitation of the wind and the sun as atternate energies. To use coordination between the power semiconductors, the system controller, mens are becoming more complex and require precise provide the necessary information from the load to fulfill that function. We can compare the use of transducers to adding "eyes" to the system.

LEM products are al UPS, welding, robots, cranes, cable cars, ski lifts, elevators, ventilation, air-conditioning, power supplies for computer servers and telecom.

This trend towards more involved power electronics happens in a general manner in the industrial world, for example, in lighting, domestic appliances, computers and telecom applications. Power electronics increases efficiency by delivering the correct type of power at the most efficient voltage, current and frequency.
TRACTION \& TRACKSIDE MARKET
Today, high speed trains, city transit systems (metro, trams, and trolleybuses) and freight trains are the solutions against pollution and interstate traffic immobility, and provide a significant energy savings.
Power electronics is essential to drive and control energy in these transportation systems.
LEM has been the market leader in traction power electronics applications and development for the last 40 years and leverages this vast experience to supply solutions for isolated current and voltage measurements.
LEM transducers provide control and protection to power converters and inverters that regulate energy to the electric motors (for propulsion) and to the auxiliaries (for air conditioning, heating, lighting, electrical doors, ventilation, etc.). This includes the accordingly. Although this substations.
The rail ind.解 trackside applications, rail maintenance and the monitoring of points (switches) machines or signaling conditions with some new transducers families
Four decades of railway experience have cortribute evolvit technical applications. you and provide the efficient, safe and reliable operation of the railways.

HIGH PRECISION MARKET
Certain power-electronics applications require such high performance in accuracy, drift and/or response time that is necessary to switch to other technologies to achieve these goals. The validation of customer equipment is made through recognized laboratories using high-performance test benches supported by high-technology equipment including extremely accurate current transducers. These transducers are stili in need today for such traditional applications but are more and more in dermand and metering or accessories for measuring and test equipment LEM has been the leader for years in producing transducers with high performance and competitive costs for these markets. The 2009 acquisition of the Danish company, Danfysik ACP A / S, as being the world's leader in the development and manufacturing of very-high precision current transducers, reinforced this position.
To achieve this challenging target of accuracy and performance, LEM's current transducers for the high precision market use an established and proven technology, the Fluxgate technology deployed in different alternatives.
Thanks to this technology, we can claim accuracies in the parts per million (PPMs) of the nominal magnitude and is representative of the performance achieved.

The high-accuracy product range covers transducers for nominal current measurements from 12.5 A to 24 kA while providing per Kelvin (K).

LEM Solutions

EM has been the market leader in industrial, railway, high accuracy power electronics applications and development for the last 0 years and leverages this vast experience to supply solutions for isolated current and voltage measurements. Galvanically isolated devices for the measurement of currents from 0.25 A to 24000 A and voltages from 10 V to t 200 V . various technologies: open loop, closed loop, fluxgate, insulating digital technology, Rogowski, current transformer etc. LEM transducers are designed according to the most demanding international standards (EN50178, EN 50155, EN50124-1, NFF 16101, 16102, etc.) and carry CE marking. UL Recognition (UR) is also available on most models.
We have worldwide ISO 9001, ISO TS 16949 and IRIS (Geneva and Beijing LEM production and design centers) qualification and offer a 5 -year warranty on all of our products.

At LEM, we find that our customers not only require an optimal solution to accurately measure the current in their applications, but that they are also looking for a current measurement solution which brings added value to the final application and gives an edge to their competitive environment.
Performance improvement: Customers demand the best solution for all the many applications in the industry worldwide and the applications to be able to react quickly to the maticipate this. LEM remains in close collaboration with its customers and their industry.
Lem constantly strives to innovate and improve the performance, cost and size of its products.
LEM is a world-wide company with regional sales offices across the globe close to its clients' locations and production facilities in Switzerland, Europe (including Russia and Bulgaria) and Asia (China and Japan) for seamless service everywhere.

We hope you will find this catalogue a useful guide for the selection of our products.
Visit our website at www.lem.com and contact our sales network in your region for further assistance Detailed data sheets and application notes are available upon request.
Sincerely,
Hans-Dieter Huber
Vice President Industry
François Gabella
CEO LEM
LEM - At the heart of power electronics.

${ }^{4}$

Contents
Typical Applications in Power Electronics
Transducer Technologies
DRS/REU: DRIVES \& WELDING, RENEWABLE ENERGIES \& POWER SUPPLIES MARKETS

Current transducers, 0.25 ... 5 A
Current transducers, 5 ... 8.34 A
Current transducers, $10 \ldots 20 \mathrm{~A}$
Programmable HO Series
Current transducers, 2.67 ... 25 A
18-21
Current transducers, $25 \ldots 40 \mathrm{~A}$
Current transducers, 50 ... 88 A
22-23

Current transducers $100 \quad 300$

Current transducers, 100 ... 366 A
Current transducers, $400 \ldots 800 \mathrm{~A}$
Current transducers AC, $500 \ldots 2000 \mathrm{~A}_{\mathrm{AC}}$
Current transducers, 1000 ... 20000 A
Current transducers,
Minisens-FHS model, 2 ... 100 A
Current transducers with conditioned output, 2 ... 20000 A
Voltage transducers, 10 ... 2500 V (without resistor R1)

40
Voltage transducers, 50 ... 4200 V
(with built in resistor R1)
Wi-LEM
Wireless Local Energy Meter
TTR: TRACTION \& TRACKSIDE MARKET
Current transducers, Traction On-Board, 0.4 ... 500 A

Current transducers, Traction On-Board, 1000 ... 4000 A
LTC Series - Modular Current transducers Mechanical adaptation accessories Current transducers,Specific applications, 2 ... 10 A - Fault detection

Shunt Isolator, Specific applications, 0.03 V

Contents
Current transducers, Specific applications Interference Frequencies Detection
$0.1 \ldots 20 \mathrm{~A}_{\mathrm{AC}}$
Current transducers, Trackside/Substations,
10 ... 20000 A
Voltage transducers, Traction On-Boarc (without resistor R1), 10 ... 1500 V
Voltage transducers, Traction On-Board (without built in resistor R1)
50 ... 4200 V
Energy Measurement, Traction On-Board EM4T II
Selection Guide - Traction
HIP: HIGH PRECISION MARKET
Stand-alone Current transducers
12.5 ... 4000 A

Rack System Current transducers
40 ... 24000 A
AUT: AUTOMOTIVE MARKET
Applications Overview
Selection Guide - Automotive
LEM'S QUALITY AND STANDARDS
Secondary Connections Options Design Specification Form
Selection Parameters
dimension drawings
Product Coding
Symbols and Terms
LEM's Warranty
LEM International Sales Representatives

DRS/REU: DRIVES \& WELDING, RENEWABLE ENERGIES \& POWER SUPPLIES MARKETS
TTR: TRACTION \& TRACKSIDE MARKET
HIP: HIGH PRECISION MARKET
AUT: AUTOMOTIVE MARKET

Transducer Technologies
Transducer Technologies

Closed Loop Voltage Transducers (C/L)

Features

- Measurement of high voltages	•Good overall accuracy
- Safety isolation	- Ex temperature drift

Operation principle C/L

A very small current limited by a series resistor is taken from the voltage to be measured and is driven through the primary coil. The magnetic flux created by the primary current I_{p} is balanced by a complementary flux produced by driving a current through the secondary windings. A hal cevice and associated eleccronic circuit are used to generate the
secondary (compensating) current that is an exact representation of the primary voltage. The primary resistor (R_{1}) can be incorporated or not in the transducer.

Closed Loop Fluxgate C Type

Features

- High accuracy	- Measurement of differential currents (CD)
- Very wide frequency range	
- Reduced temperature drift	- Safety isolation (CV)
- Excellent linearity	- Reduced loading on the primary (CV)

Operation principle

This technology uses two toroidal cores and two secondary windings and operates on a fluxgate principle of Ampere-turns compensation. For the voltage type a small (few mA) current is taken from the voltage
line to be measured and is driven through the primary coil and the primary resistor.

Closed Loop Fluxgate CAS-CASR-CKSR type

Features

- Any kind of AC, DC, pulsed and complex signal	- Very low drift in temperature (gain and offset)
- High accuracy	- Galvanic isolation
- High accuracy in	
temperature	

Operation principle

The operating principle is that of a current transformer, equipped with magnetic sensing element, which senses the flux density in the core. The output of the field sensing element is used as the error signal in a control loop driving a compensating current through the secondary winding of the transtormer. At low frequencies, the control loop maintains the flux through the core near zero. As the frequency rises, an increasingly large fraction of
the compensating current is due to the operation in transformer mode. The secondary current is therefore the image of the primary current. In a voltage output transducer, the compensating current is converted to a voltage through a precision resistor, and made available at the output of a buffer amplifier
Closed Loop Fluxgate CTSR type

Features

- Any kind of AC, DC, pulsed	- Very low drift in temperature
and complex signal	(gain and offfet)
- Non-contact measurement	- Protection sagainst
of differential currents	parasitic magnetic field
- High accuracy for small	- Galvanic isolation
residual currents	

Operation principle

No use of Hall generators. The magnetic flux created by the primary residual current $I_{\text {pe }}$ (sum between I_{c} and $I_{N \text {) }}$ is compensated by a secondary
current. The zero-flux detector is a symmetry detector using a wound corre connected to a square-wave generator. The secondary compensating current is an exact representation of the primary current.
In a voltage output transducer, the compensating current is converted to a voltage through a precision resistor, and made available at the output of a buffer amplifier.
The magnetic core is actually made up of a pair of 2 magnetic shells inside which the detector is located.

Closed loop Fluxgate ITC type

eatures

- Excellent linearity	- Low residual noise
- Better than Class 0.5 R	- Very low sensitivity to high
according to EN 50463	external DC and AC fields
- Outstanding long-	- High temperature stability
term stability	

- Outstanding long
term stability
- High temperature stability

Operation principle

ITC current transducers are high accuracy transducers using fluxgate technology. This high sensitivity zero-flux detector uses a second wound
core (D') for noise reduction. A difference between primary and secondary ampere turns creates an asymmetry in the fluxgate current.
This difference is detected by a microcontroller that controls the secondary irrent that compensates the primary ampere turns $\left(I_{\mathrm{p}} \times N_{\mathrm{p}}\right)$.
This results in a very good accuracy and a very low temperature drift. The secondary compensating current is an exact representation of the
primary current. primary curren

Closed Loop Fluxgate IT type

Features

- Very high global accuracy - High temperature stability
- Very high global accura
temperature stability
- Low residual noise - Wide frequency range
- Low cross-over distortion

Operation principle

IT current transducers are high accuracy, large bandwidth transducers using fluxgate technology with no Hall generators. The magnetic flux
created by the primary current 1 , is compensated by a secondary current. The zero-flux detector is a symmetry detector using two wound cores connected to a square-wave generator. The secondary compensating current is an exact representation of the primary current.

Transducer Technologies

DV a

- Insulating digital technology • High galvanic isolation
- Measurement of all
types of signals: DC, AC,
pulsed and complex
- Compact size,
reduced volume - Low consumption and losses - Very high accuracy, Class
0.5 R according to EN 50463 (DV Models) - Low temperature drift

Operation principle

The measuring voltage, V_{p}, is applied directly to the transducer primary connections through a resistor network allowing the signal conditioning erccitry to feed a signa-Det one single isolated channel.
The signal is then transmitted to the secondary over an insulating and the low voltage side (secondary).
The signal is reshaped on the secondary side, then decoded and filtered through a digital filter to feed a micro-controller using a Digital/Analog (D/A) converter and a voltage to current generator.
The recovered output signal is completely insulated against the primary and
is an exact representation of the primary voltage.
DI Type Current transducers (Shunt isolator)

Features

- Insulating digital technology •High galvanic isolation
- Measurement of all
types of signals: $D C, A C$ pulsed and complex
reduced volume - Low consumption and losses - Very high accuracy, Class
1R according to EN 50463 - Low temperature drift

Operation principle

DI current transducers (Shunt isolator) must be used combined with an xternal Shunt.
DI current transducers are working as DV voltage transducers except that the input resistor network used inside the DV is replaced by an external
Shunt providing then the voltage input to feed the Sigma-Delta modulator that allows to transmit data via one single isolated channel.
${ }^{10}$

Transducer Technologies

Split Core Current transformers AT \& TT type Features

- Non-contact measurement	- Easy to use: Can be opened
- AC \& pulsed signal	•Good overall accuracy
- No power supply	•Galvanic isolation

Operation principle

A transformer is a static electrical device transferring energy by inductive coupling between the windings making part of it. It is made with a primary coil (W) with N_{p} turns and a secondary coil (W_{s}) with N_{s} turns, wound around the same magnetic core (C).
A varying current I_{p} in the primary winding (assimilated here to the primary conductor crossing the aperture: $N_{p}=1$) creates a varying magnetic flux in the transformer's core crossing the secondary winding. This varying magnetic flux induces a varying electromotive force or voltage $V_{\text {ind }}$ in th secondary winding. Connecting a load to the secondary winding causes a
current I to flow. This compensating secondary current I is substantially proportional to the primary current 1_{p} to be measured so that $N_{p} I_{p}=N_{s} I_{s}$ DC currents are not measured and not suitable because they
represent a risk of magnetic saturation. The relationship here above is respected only within the bandwidth of the current transforme Warning!: Never let the output unloaded because there is a risk of safety for users.

RiME operates on the basic Rogowski principie. Instead of a traatitional wound coil, the measuring head is made of a number of sensor printed circuit boards (PCBS, each made of two separate air cored coils) mounted on a base-PCB. Each sensor PCB is connected in series to form two
concentric loops. The induced voltage at their outputs is then integrated in order to obtain both amplitude and phase information for the current being measured.

Notes:

1) Small signal bandwidth to avoid excessive core heating at high frequency
2) $\operatorname{Ref}_{\mathbb{N}} \& \operatorname{Ref}_{\text {out }}$ modes
$I_{P N}=2 \mathrm{~A} \ldots 5 \mathrm{~A}$

$\mathrm{I}_{\mathrm{PN}}=5 \mathrm{~A} \ldots 7.5 \mathrm{~A}$
DRS / REU

I		A			DRS		U	open-100			Closed	Fiuxa	
									mnection				
						\times	$T_{\text {A }}$	Pinar		eonday	${ }_{5}$	Type	
				${\text { @ }{ }_{\text {mu }}}$		\%		\%	\%	交			
5	± 12.5	oı	+560	$2.5 \mathrm{Vor} \mathrm{V}_{\mathrm{uta}} \pm 0.8 \mathrm{~V}$	DC-250 (-381)	1	-40..105	-	-		13	но 15-NP-00009	
5	± 12.5	or	+50	$2.5 \mathrm{Vor} \mathrm{V}_{\text {ut }} \pm 0.8 \mathrm{~V}$	DC.250 -(38)	1	-40. +105	SMD	SMD		14	н0 15-Nsm-0000 ${ }^{\text {s }}$	
5	± 12.5	or	+3.30	${ }^{1.65 V}$ or $V_{\text {wit }} \pm 0.460 \mathrm{~V}$	DC-250 (-38)	1	-40..105	-	-		- 13		
5	± 12.5	or	+3.30	${ }^{1.65 V}$ or $V_{\text {rut }} \pm 0.480 \mathrm{~V}$	DC-250 (-38B)	1	-40..+105	SMD	SMD		14		
5	± 15	or	± 12.15	4 V	D0.50 (-888) ${ }^{\text {P }}$	2.4	-25..485	-	-		15	Hxx 05.p	
2×5	${ }_{\substack{2 \times \pm 15}}^{\text {15 }}$	or	± 15	$2 \times 4 \mathrm{~V}$	DC.50(H-388) ${ }^{\text {P }}$	3.75	-40.185	-	-		16	HX0 05.p	ом
5	± 16	ch	+50	$2.5 v^{*} 0.825 \mathrm{~V}$	DC-200 (-18)	0.7	-40..+85	-	-		9	LTs 15-NP	
5	± 16	ch	+500	2.5 V or $\mathrm{Vext}^{2} 0.025 \mathrm{~V}$	DC.200 (-18)	0.7	-40..185	-	-		10	(TsR 15-NP)	
5	± 17	${ }_{\substack{\text { Fuxasie } \\ \text { Cas }}}^{\text {ald }}$	+500	2.5 V 0.025 V	DC.300 (t+-38B)	0.8	-40.185	-	-		11	CAS 15-NP	
5	± 17	$\underset{\substack{\text { Fuxatie } \\ \text { Cas }}}{ }$	+50		DC.300(tr-88)	0.8	-40.+85	-	-		12	CASB 15-NP ${ }^{\text {a }}$	
6	± 9	ch	± 15	24 mA	DC.150(-18)	0.5	$-40 .+85$	-	-		17	LA 25 -. P P	
${ }^{6}$	± 19.2	ch	+50	$2.5 \mathrm{v}_{0.0} .25 \mathrm{~V}$	DC-200 (-18)	0.7	-40..85	-	-		9	LTs 6 -NP	
6	± 19.2	or	+5/0	2.5 or $\mathrm{V}_{\text {ut }}+0.825 \mathrm{~V}$	DC-200 (-18)	0.7	-40.185	-	-		10	LTsp 6 -npo	
${ }^{6}$	± 20	${ }_{\substack{\text { Fuxate } \\ \text { CAS }}}$	+50	$2.5 \mathrm{~V}_{0.0} .25 \mathrm{~V}$	DC-300(t)-88B)	0.8	$-40 .+85$	-	-		11	cas 6 - ${ }^{\text {P }}$	
6	± 20	${ }_{\substack{\text { Flugate } \\ \text { CAS }}}^{\text {as }}$	+500	2.5 Vor $V_{\text {a }}+0.025 \mathrm{~V}$	DC-300(t+388)	0.8	-40..85	-	-		12	Casf 6-Np ${ }^{\text {a }}$	
6	± 20	Fixasie	+500	2.5 or $V_{\text {un }}+0.025 \mathrm{~V}$	DC.300(1/.88B)	0.8	-40. +105	-	-		${ }^{8}$	CKsf 6-NP9	
${ }^{6.25}$	${ }_{21.25}^{ \pm}$	${ }_{\substack{\text { Fuxate } \\ \text { CAS }}}^{\text {che }}$	+50	2.5 V or $\mathrm{Vexj} \pm 0.022 \mathrm{~V}$	DC.300(t+-381)	0.8	-40..+105	-	-		8	CKSR 25-NP ${ }^{\text {g }}$	
7	± 14	ch	± 15	35 mA	DC. $150(-188)$	0.5	-25.470	-	-		17	LA 35-NP	
7.5	$\underset{\text { 18.75 }}{ \pm}$	or	+500		DC-250 (-3dB)	1	-40..+105	-	-		13	H0 15-NP-00009	
7.5	${ }_{\text {18.75 }}^{ \pm}$	on	+50	$2.5 \mathrm{Vor} \mathrm{V}_{\text {wit }} \pm 0.8 \mathrm{~V}$	DC.-250 (-38B)	1	-40. +105	SMD	SMD		14	H0 15-Nsm-0000	
7.5	${ }_{18,75}^{ \pm}$	on	+3.3/0	${ }^{1.65 V}$ Or $V_{\text {Mut }} \pm 0.400 \mathrm{~V}$	DC.250(-381)	1	-40..+105	-	-		13		
7.5	$\xrightarrow[\text { ¢ } 18.75]{ \pm}$	or	+3.30	${ }^{1.65 V}$ or $V_{\text {rut }} \pm 0.480 \mathrm{~V}$	DC-250 (-38)	1	-40..+105	SMD	smD		14		

$I_{P N}=7.5 \mathrm{~A} \ldots 8.34 \mathrm{~A}$

PN					S /		U		n-loop			Closed	ed-100	Fuxgate	
									Conne	ection					
		\bigcirc					$T_{\text {A }}$		mary	Seconc	dary	5	O	Type	
				© $_{\text {PN }}$		\%		\%		O	㐫		-		
7.5	± 24	c/	+5/0	$2.5 \mathrm{v} \pm 0.625 \mathrm{~V}$	DC-200 (-1dB)	0.7	-40...+85	-		\bullet		-	9	LTS 15-NP	
7.5	± 24	c/	+5/0	2.5 V or $\mathrm{Vex}_{\text {re }} \pm 0.625 \mathrm{~V}$	DC-200 (-10B)	0.7	-40...85	-		-		-	10	LTSR 15-Np ${ }^{\text {g }}$	
7.5	± 25.5	$\underset{\substack{\text { Fluxgate } \\ \text { CAS }}}{ }$	+5/0	$2.5 \mathrm{~V} \pm 0.625 \mathrm{~V}$	DC-300 (+ -3dB)	0.8	$-40 . .+85$	\bullet		\bullet		-	11	CAS 15-NP	
7.5	± 25.5	$\underset{\text { Fluxate }}{\text { CAS }}$	+5/0	2.5 V or $\mathrm{V}_{\text {ref }} \pm 0.625 \mathrm{~V}$	DC-300 (+/-3dB)	0.8	-40...85	-		-		-	12	CASR 15-NP ${ }^{\text {9 }}$	
7.5	± 25.5	$\underset{\text { Cus }}{\text { CASate }}$	+5/0	2.5 V or $\mathrm{V}_{\text {ref }} \pm 0.625 \mathrm{~V}$	DC-300 (+/-3dB)	0.8	-40...+105	-		\bullet		-	8	CKSR 15-NP ${ }^{\text {F }}$	
8	± 12	ch	± 15	24 mA	DC-150 (-10B)	0.5	$-40 . .+85$	-		\bullet		-	17	LA 25-NP	
8	± 16	ch	± 15	32 mA	DC-150 (-10B)	0.5	$-25 . .+70$	-		\bullet		\bullet	17	LA 35-NP	
8	± 18	ch	$\pm 12 . .15$	24 mA	DC-200 (-10B)	0.4	$-25 . .+85$	-		-		-	18	LAH 25-NP	
8	± 20	O/L	+5/0	2.5 V or $V_{\text {ret }} \pm 0.8 \mathrm{~V}$	DC-250 (-3dB)	1	-40...105	-		\bullet		-	13	H0 8-NP-0000s)	
8	± 20	O/L	+5/0	2.5 V or $V_{\text {ret }} \pm 0.8 \mathrm{~V}$	DC-250 (-8dB)	1	$-40 . .+105$	SMD		SMD		-	14	Ho 8-NSM-0000 ${ }^{\text {a }}$	
8	± 20	O/	+3.30	1.65 V or $V_{\text {ref }} \pm 0.460 \mathrm{~V}$	DC-250 (-3dB)	1	$-40 . .+105$	-		\bullet		-	13	HO 8-NP/SP33-1000 ${ }^{\text {a }}$	
8	± 20	O/L	+3.3/0	${ }^{1.655}$ or $V_{\text {ret }} \pm 0.460 \mathrm{~V}$	DC-250 (-3dB)	1	$-40 . .+105$	SMD		SMD		-	14	$\begin{aligned} & \text { H0 8-NSM/ } \\ & \text { SP33-1000 5) } \\ & \hline \end{aligned}$	
8.33	± 16.66	ch	+5/0	12.5 mA	DC-300 (-108)	0.7	$-40 . .+85$	-		-		-	19	LTSP 25-NP	
8.33	± 20.83	o/	+5/0	2.5 V or $V_{\text {ret }} \pm 0.8 \mathrm{~V}$	DC-250 (-3dB)	1	$-40 . .+105$	-		-		-	13	HO 25-NP-0000 ${ }^{\text {a }}$	
8.33	± 20.83	O/L	+5/0	2.5 V or $V_{\text {ret }} \pm 0.8 \mathrm{~V}$	DC-250 (-8dB)	1	$-40 . .+105$	smb		SMD		-	14	HO 25-NSM-00009	
8.33	± 20.83	O/L	+3.3/0	${ }^{1.65 V}$ or $V_{\text {ret }} \pm 0.460 \mathrm{~V}$	DC-250 (-3dB)	1	-40...105	-		-		-	13	$\begin{aligned} & \mathrm{HO} 25-\mathrm{NP} / \\ & \text { SP33-1000 } \end{aligned}$	
8.33	± 20.83	o/	+3.3/0	${ }^{1.65 V}$ or $V_{\text {ret }} \pm 0.460 \mathrm{~V}$	DC-250 (-3dB)	1	-40...105	SMD		SMD		-	14	HO 25-NSM/ SP33-1000	
8.34	± 26.67	ch	+5/0	$2.5 \mathrm{~V} \pm 0.625 \mathrm{v}$	DC-200 (-1dB)	0.7	-40...85	-		-		-	9	LTS 25-NP	
8.34	± 26.67	c/L	+5/0	2.5 V or $\mathrm{V}_{\text {vel }} \pm 0.625 \mathrm{~V}$	DC-200 (-1dB)	0.7	-40...85	-		\bullet		-	10	LTSR 25-NP 9)	
8.34	± 28.34	$\begin{aligned} & \text { Fluxgate } \\ & \text { CAS } \end{aligned}$	+5/0	$2.5 \mathrm{v} \pm 0.625 \mathrm{v}$	DC-300 (+-3dB)	0.8	-40...+85	-		-		-	11	CAS 25-NP	
8.34	± 28.34	$\begin{gathered} \text { Fluxgate } \\ \text { CAS } \end{gathered}$	+5/0	2.5 V or $\mathrm{V}_{\text {ret }} \pm 0.625 \mathrm{~V}$	DC-300 (+-3dB)	0.8	-40...85	-		\bullet		-	12	CASR $25-\mathrm{NP}{ }^{\text {9 }}$	

Notes:

1) Small signal bandwidth to avoid excessive core heating at high frequency
2)
3) $\operatorname{Ref}_{W} \&$ Ref $_{\text {out }}$ modes

DM = Dual Measurement
Dedicated data sheets are the only recognized reference documents for the given performances and data - Data sheets: www.lem.com
$\mathrm{I}_{\mathrm{PN}}=10 \mathrm{~A} \ldots 12.5 \mathrm{~A}$
DRS / REU

Type
$I_{P N}=15 \mathrm{~A} . . .20 \mathrm{~A}$
DRS / REU

15	± 37.5	0/L	+5/0	2.5 V or $\mathrm{V}_{\text {ret }} \pm 0.8 \mathrm{~V}$	DC-250 (-3dB)	1	-40...+105	-	-	-	13	H0 15-NP-00009	
15	± 37.5	O/L	+5/0	2.5 V or $V_{\text {vex }} \pm 0.8 \mathrm{~V}$	DC-250 (-3dB)	1	$-40 . .+105$	SMD	SMD	-	14	HO 15-NSM$0000{ }^{5}$	
15	± 37.5	O/L	+3.3/0	1.65 V or $V_{\text {ref }} \pm 0.460 \mathrm{~V}$	DC-250 (-3dB)	1	$-40 . .+105$	-	-	-	13	HO 15-NP/ SP33-1000 ${ }^{5}$	
15	± 37.5	O/L	+3.3/0	1.65 V or $V_{\text {eft }} \pm 0.460 \mathrm{~V}$	DC-250 (-3dB)	1	$-40 . .+105$	SMD	SMD	-	14	HO 15-NSM/ SP33-1000	
15	± 45	O/L	$\pm 12 . .15$	4 V	DC-50 (-3dB) ${ }^{\text {I }}$	2.4	-25...+85	\bullet	-	-	15	HXN 15-P	
2×15	$2 \times \pm$ 45	0/L	± 15	$2 \times 4 \mathrm{~V}$	DC-50 (t/-38B) "	3.75	-40...+85	-	-		16	HXD 15-P	dм
15	± 48	c/	+5/0	$2.5 \mathrm{v} \pm 0.625 \mathrm{v}$	DC-200 (-1dB)	0.7	$-40 . .+85$	-	-	-	9	LTS 15-NP	
15	± 48	c/L	+5/0	2.5 V or $\mathrm{Vefs}^{\text {m }} 00.625 \mathrm{~V}$	DC-200 (-1dB)	0.7	$-40 . .+85$	-	-	-	10	LTSR 15-NP ${ }^{\text {s }}$	
15	± 51	$\begin{gathered} \text { Fluxgate } \\ \text { CAS } \end{gathered}$	+5/0	$2.5 \mathrm{v} \pm 0.625 \mathrm{~V}$	DC-300 (+-3dB)	0.8	-40...+85	\bullet	-	-	11	CAS 15-NP	
15	± 51	$\begin{gathered} \text { Fluxgate } \\ \text { CAS } \end{gathered}$	+5/0	2.5 V or $\mathrm{V}_{\text {ef }} \pm 0.625 \mathrm{~V}$	DC-300 (+/-3dB)	0.8	-40...+85	\bullet	-	-	12	CASR 15-NP ${ }^{\text {9 }}$	
15	± 51	$\begin{gathered} \text { Fluxgate } \\ \text { CAS } \end{gathered}$	+5/0	2.5 V or $\mathrm{Vefef} \pm 0.625 \mathrm{~V}$	DC-300 (+-3dB)	0.8	$-40 . .+105$	\bullet	-	-	8	CKSR 15-NP ${ }^{\text {g }}$	
16.67	± 50	$\begin{gathered} \text { Fluxgate } \\ \text { CAS } \end{gathered}$	+5/0	$2.5 \mathrm{v} \pm 0.625 \mathrm{~V}$	DC-300 (+-3dB)	0.8	-40...+85	-	-	-	11	CAS 50-NP	
16.67	± 50	$\begin{gathered} \text { Fluxgate } \\ \text { CAS } \end{gathered}$	+5/0	2.5 V or $\mathrm{V}_{\text {ref }} \pm 0.625 \mathrm{~V}$	DC-300 (+-3dB)	0.8	-40...+85	\bullet	\bullet	-	12	CASR 50-NP9)	
17	± 34	CL	± 15	34 mA	DC-150 (-18B)	0.5	$-25 . .+70$	\bullet	-	-	17	LA 35-NP	
20	± 50	0/L	+5/0	2.5 V or $\mathrm{V}_{\text {eft }} \pm 0.8 \mathrm{~V}$	DC-240 (-3dB)	1	$-40 . .+105$	-	-		20	HLSR 20-P ${ }^{\text {g }}$	
${ }^{20}$	± 50	O/L	+5/0	2.5 V or $V_{\text {refe }} \pm 0.8 \mathrm{~V}$	DC-240 (-3dB)	1	$-40 . .+105$	SMD	SMD		${ }^{21}$	HLSR 20-SM ${ }^{\text {¢ }}$	
20	± 50	0/L	+3.3/0	1.65 V or $V_{\text {vef }} \pm 0.460 \mathrm{~V}$	DC-240 (-3dB)	1	-40...+105	-	-		20	$\begin{aligned} & \text { HLSR 20-P/ } \\ & \text { SP335) } \end{aligned}$	
20	± 50	0/L	+3.3/0	1.65 V or $V_{\text {ret }} \pm 0.460 \mathrm{~V}$	DC-240 (-3dB)	1	$-40 . .+105$	SMD	SMD		21	$\begin{gathered} \hline \text { HLSR 20-SM/ } \\ \text { SP335 } \end{gathered}$	
20	± 60	0/L	$\pm 12 . .15$	4 V	DC-50 (-3dB))	2.4	-25...+85	-	-	-	15	HXN 20-P	
2×20	$\begin{gathered} 2 \times \pm \\ 60 \end{gathered}$	O/L	± 15	$2 \times 4 \mathrm{~V}$	DC-50 (+-3dB) "	3.75	$-40 . .+85$	-	-		16	HXD 20-P	DM

(21)
(20)

Notes:

1) Small signal bandwidth to avoid excessive core heating at high frequency
2) $\operatorname{Ref}_{\text {w }} \& \operatorname{Ref}_{\text {out }}$ modes

DM = Dual Measurement
Dedicated data sheets are the only recognized reference documents for the given performances and data - Data sheets: www.lem.com
$I_{P N}=2.67 \mathrm{~A} \ldots 25 \mathrm{~A}$

$I_{P N}=2.67$ A ... 25								DRS / REU Open-loop							
$\begin{aligned} & I_{P N} \\ & A \end{aligned}$	I_{p} A	$\begin{aligned} & \text { ते } \\ & \text { 응 } \\ & \stackrel{\mathrm{C}}{\circ} \\ & 0 . \end{aligned}$	$\begin{aligned} & u_{c} \\ & v \end{aligned}$	$\begin{gathered} \substack{V_{\text {out }} \\ i_{\text {out }} \\ @_{\mathrm{IN}}} \end{gathered}$	BW kHz		T_{A} ${ }^{\circ} \mathrm{C}$	Connection					$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \frac{0}{6} \\ & \frac{8}{0} \\ & 0 \\ & 0 \end{aligned}$	Type	¢
								Prim		Seconc	dary				
								\%		\%	年				
$2.67 ; 5$	$\begin{gathered} \pm 6.67 ; \pm \\ 12.5 ; \pm 20.83 \end{gathered}$	O/L	+5/0	$\begin{gathered} 2.5 ; 1.65 ; 1.5 ; \\ 0.5 \mathrm{~V} \text { or } \mathrm{V}_{\text {ref }} \pm 0.8 \mathrm{~V} \end{gathered}$	$\text { DC-100; } 250$ $\text { ; } 600 \text { (-3dB) }$	1	$-40 .+105$	-		-		-	13	HO 25-NPPR ${ }^{5}$ Orange for default setting	P
$\begin{aligned} & 4 ; 7.5 \\ & ; 12.5 \end{aligned}$	$\pm 10 ; \pm 18.75$	O/L	+5/0	$\begin{gathered} 2.5 ; 1.65 ; 1.5 ; \\ 0.5 \mathrm{~V} \text { or } V_{\text {ref }} \pm 0.8 \mathrm{~V} \end{gathered}$	$\text { DC-100; } 250$ $\text { ; } 600(-3 \mathrm{~dB})$	1	$-40 . .+105$	-		-		-	13	HO 25-NPPR ${ }^{5}$ Orange for default setting	P
8;15;25	$\pm \begin{gathered} \pm 20 ; \pm 37.5 \\ i=62.5 \end{gathered}$	0/L	+5/0	$\begin{gathered} 2.5 ; 1.65 ; 1.5 ; \\ 0.5 \mathrm{~V} \text { or } V_{\text {ref }} \pm 0.8 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \text { DC-100; } 250 \\ & 6000(-d B) \end{aligned}$	1	-40...+105	-		-		-	13	HO 25-NPPR ${ }^{5)}$ Orange for default setting	P
$\underset{\substack{2.67 ; 5 \\ ; 8.33^{\prime}}}{ }$	$\begin{gathered} \pm 6.67 ; \pm \\ 12.5 ; \pm 20.83 \end{gathered}$	0/L	+5/0	$\begin{gathered} 2.5 ; 1.65 ; 1.5 ; \\ 0.5 \mathrm{~V} \text { or } V_{\text {ref }} \pm 0.8 \mathrm{~V} \end{gathered}$	$\text { DC-100; } 250$ $\text { ; } 600(-3 \mathrm{~dB})$	1	-40...+105	SMD		SMD		-	14	HO 25-NSMPR Orange for default setting	P
$\begin{aligned} & \begin{array}{l} ; 7.5 \\ ; 2.5 \end{array} \end{aligned}$	$\pm 10 ; \pm 18.75$	O/L	+5/0	$\begin{aligned} & 2.5 ; 1.65 ; 1.5 ; \\ & 0.5 \mathrm{Vor} V_{\text {cot } \pm 0.8 \mathrm{~V}} \end{aligned}$	$\mathrm{DC}-100 ; 250$ $: 60(-3 \mathrm{~dB})$	1	$-40 . .+105$	SMD		SMD		-	14	HO 25-NSMPR ${ }^{5}$ Orange for default setting	P
8;15;25	$\underset{\substack{ \pm 20 ; \pm 37.5 \\ ; \pm 62.5}}{ }$	0/L	+5/0	$\begin{gathered} 2.5 ; 1.65 ; 1.5 ; \\ 0.5 \mathrm{~V} \text { or } V_{\mathrm{refef}}+0.8 \mathrm{av} \end{gathered}$	$\begin{gathered} \text { DC-100; } 250 \\ : 600(-2 d B) \end{gathered}$	1	-40...+105	SMD		SMD		-	14	HO 25-NSMPR Orange for default setting	P
$\begin{gathered} 2.67 ; 5 \\ \hdashline .830 \end{gathered}$	$\begin{gathered} \pm 6.67 ; \pm \\ 12.5 ; \pm 20.83 \end{gathered}$	O/L	+3.30	$\begin{aligned} & 2.5 ; 1.65 ; 1.5 ; 0.5 \\ & \text { Vor } V_{\text {ref }} \pm 0.460 \mathrm{~V} \end{aligned}$	$\begin{gathered} \text { DC-100; } 250 \\ : 600(-3 d B) \end{gathered}$	1	-40...+105	-		-		-	13	HO 25-NPPR/SP33 ${ }^{5}$ Orange for default setting	P
$4 ; 7.5$	$\pm 10 ; \pm 18.75$	0/L	+3.30	$\begin{aligned} & 2.5 ; 1.65 ; 1.5 ; 0.5 \\ & \text { vor } V_{\text {refe }} \pm 0.460 \mathrm{l} \end{aligned}$	$\text { DC-100; } 250$ $\text { ; } 600 \text { (-3dB) }$	1	-40...+105	-		-		-	13	HO 25-NPPR/SP33 ${ }^{5)}$ Orange for default setting	P
8;15;25	$\underset{\substack{ \pm 20 ; \pm 37.5 \\ \vdots \\ \vdots \\ \hline 62.5}}{ }$	O/L	+3.30	$\begin{gathered} 2.5 ; 1.65 ; 1.5 ; 0.5 \\ \operatorname{Vor} V_{\text {vext }}+0.460 V \end{gathered}$	DC-100; 250 ; 600 (-3dB)	1	-40...+105	-		-		-	13	HO 25-NPPR/SP33 ${ }^{5)}$ Orange for default setting	P
$\underset{\substack{2.67 ; 5 \\ ; 8.33}}{\substack{ \\ \\\text { c, }}}$	$\begin{gathered} \pm 6.67 ; \pm \\ 12.5 ; \pm 20.83 \end{gathered}$	O/L	+3.30	$\begin{gathered} 2.5 ; 1.65 ; 1.5 ; 0.5 \\ \operatorname{Vor} V_{\text {ret }} \pm 0.460 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \text { DC-100; } 220 \\ & 6000(-3 D B) \end{aligned}$	1	-40...+105	SMD		SMD		-	14	HO 25-NSMPR/SP33 ${ }^{5}$ Orange for default setting	P
$\begin{aligned} & 4 ; 7.5 \\ & ; 12.5 \end{aligned}$	$\underset{\substack{ \pm 10 ; \pm 18.75 \\ ; \pm 31.25}}{\substack{ \\\hline}}$	O/L	+3.3/0	$\begin{aligned} & 2.5 ; 1.65 ; 1.5 ; 0.5 \\ & \text { Vor } V_{\text {ref }} \pm 0.460 \mathrm{~V} \end{aligned}$	DC-100; 250 $; 600(-3 \mathrm{~dB})$	1	-40...+105	SMD		SMD		-	14	HO 25-NSMPR/SP33 5) Orange for default setting	P
8;15;25	$\underset{\substack{ \pm 20 ; \pm 37.5 \\ ; \pm 62.5}}{\substack{\text { a }}}$	O/L	+3.3/0	$\begin{aligned} & 2.5 ; 1.65 ; 1.5 ; 0.5 \\ & \operatorname{Vor} V_{\text {ret }} \pm 0.460 \mathrm{~V} \end{aligned}$	$\begin{gathered} \text { DC-100; } 250 \\ : 600(-2 d B) \end{gathered}$	1	-40...+105	SMD		SMD		-	14	HO 25-NSMPR/SP33 ${ }^{5}$ Orange for default setting	P

(3)

5) $\operatorname{Ref}_{W} \&$ Ref $_{\text {out }}$ modes
$\mathrm{P}=$ Programmable by the user at any time for the current range (between 3 ranges) ; The internal reference (between 4 references) ; The response
time (between 3 response times) ; Lower comsumption mode ; Overcurrent detection level ; Device faulty indication mode ; Standby mode.

HO SERIES

Current Transducers with Advanced ASIC Technology Integrating Intelligent and Interactive Functions
Any logistics manager will appreciate the value of a single stock item that covers two or more part numbers: in the case of a current transducer, having one type that can cover several current ranges, offer various response times, and provide several current transducer, having one type that can cover several current ranges, offer various response times, and provide several
choices for the internal reference voltage, all configurable by the engineering team. Achieving that flexibility has been the key motivation for LEM engineers while optimizing the cost and reducing the size, together with improving performance
Special effort has been focused on a new Application Specific Integrated Circuit (ASIC) to help achieve these goals, resulting in a new generation of ASIC specific current transducers based on the Open Loop Hall effect technology leading to the development of the HO series

With this ASIC at its heart, the HO models are designed for current measurements from $2.67 \mathrm{~A}_{\text {RMs }}$ to $25 \mathrm{~A}_{\text {RMS }}$ nominal, with nine possible current ranges selectable either by digital programmability or by multi-range PCB configuration.
Possible nominal ranges of HO 25-NPPR/-NSMPR with the various primary bus bar configurations

Number of primary turns	Primary current		
	Range 1 $\mathrm{I}_{\text {PN }}=8 \mathrm{~A}$	Range 2 $\mathrm{I}_{\text {PN }}=15 \mathrm{~A}$	Range 3 $\mathrm{I}_{\mathrm{PN}}=25 \mathrm{~A}$
	8 A	15 A	25 A
2	4 A	7.5 A	12.5 A
3	2.67 A	5 A	8.33 A

Recommended PCB Connection

HO SERIES

HO's main benefits include the following

- Three programmable current ranges: $8 \mathrm{~A}_{\text {RMS }}, 15 \mathrm{~A}_{\text {RMS }}, 25 \mathrm{~A}_{\text {RMS }}\left(25 \mathrm{~A}_{\text {RMS }}\right.$ set by default)
- A broad range of programmable functions including Low power mode, Standby mode, and EEPROM control (fault reporting)
- Single +3.3 V or +5 V power supply (in two different HO versions)
- Offset and gain drifts two times better than the previous generation
- Programmable over-current detection (OCD) function provided on a dedicated pin, to be set by the user over 16
programmable levels up to $5.8 \times I_{\text {PN }}$ (the nominal primary current). The OCD output turns on within $2 \mu \mathrm{~s}$ when programmed over-current occurs, switching from a high (5 V) to a low level (0 V). The accuracy; the user can set a minimum duration of the OCD output pulse of 1 ms if required, to ensure that a short overload Progil be detected by an external micro-controller
- Four programmable internal reference voltages: 2.5, 1.65, 1.5 or 0.5 V (with +5 V power supply), available on a dedicated pin
- Possible use of an external voltage reference from 0.5 to 2.65 V (with +5 V power supply)
- Measuring range up to $2.5 \times \mathrm{I}_{\mathrm{D}}$
- -40 to $+105^{\circ} \mathrm{C}$ operating temperature range.
- High accuracy at $+25^{\circ} \mathrm{C}: 1 \%$ of $\mathrm{I}_{\text {py }}$ and at $+85^{\circ} \mathrm{C}: 2.9 \%$ of $\mathrm{I}_{\text {IN }}$
- Creepage \& clearance distances: $8 \mathrm{~mm}+$ Comparative Tracking Index 600 V
- Small device outline: $12(\mathrm{~W}) \times 23(\mathrm{~L}) \times 12(\mathrm{H}) \mathrm{mm}$
- Through-hole and SMT packages

Key parameters of $\mathrm{HO} 25-$ NPPR/-NSMPR models
$\left.\begin{array}{|c|c|c|c|}\hline \begin{array}{c}\text { Programmable } \\ \text { Rating } \mathrm{I}_{\mathrm{PN}}\left(\mathrm{A}_{\text {PMS }}\right)\end{array} & 8 \text { or } 15 \text { or } 25 & \begin{array}{c}\text { Accuracy } @+25^{\circ} \mathrm{C} \\ \left(\% \text { of } \mathrm{I}_{\mathrm{PN}}\right)\end{array} & 1 \\ \hline \text { Measuring range } \mathrm{I}_{\mathrm{PM}}(\mathrm{A}) & +/-2.5 \times \mathrm{I}_{\text {PN }} & \begin{array}{c}\text { Accuracy } \\ \left(\% \text { of } \mathrm{I}_{\mathrm{PN}}\right)\end{array} & 30{ }^{\circ} \mathrm{C}\end{array}\right]$

Users program the HO transducer through a connection to a host microcontroller: when the $V_{\text {Ref }}$ pin is forced to the supply voltage, the output pin becomes the I/O port of a single wire bus interface. Over this interface, serial data comprising a 12 -bit the over-current detection threshold. Data is sent over this interface to the transducer at $10 \mathrm{kbits} / \mathrm{s}$, and programming takes only a few hundred milliseconds. This programming procedure may be carried out at any time, so the operating parameters of the HO transducer may be re-assigned, even during operation of the device in its application.
For users who require transducers already programmed to a single set of operating parameters, LEM can also offer models with performance and function already set at the factory

HO SERIES
HO name and codification

As an example

HO 25-NP-0000: performances and functions are set as follows:

- First digit
$=0$
$=0$
\rightarrow Reference out $=2.5 \mathrm{~V}$
\rightarrow Response time $=3.5$
$\begin{array}{lll}\text { - Second digit } & =0 & \rightarrow \text { Response time }=3.5 \mu \mathrm{~S} \\ \text { - Third digit } & =0 & \rightarrow \text { Control EEPROM }=\text { YES }\end{array}$
- Fourth digit $=0 \rightarrow$ Overcurrent detection $=2.9 \times / p$

$I_{P N}=25 \mathrm{~A} . . .40 \mathrm{~A}$

N			,		RS /		Op	-loop			Closect	-loop	Fluxgat	
						-			Connec	ection				
I_{PN}		$\frac{\mathbf{0}}{\mathbf{\circ}}$	u_{c}			(1)	T_{A}	Prima	nary	Seco	-		Type	$\stackrel{\text { ® }}{\frac{0}{5}}$
A	A	$\stackrel{\oplus}{\square}$	v	${\text { @ } \mathrm{I}_{\mathrm{Pw}}}$		\%	${ }^{\circ} \mathrm{C}$	Oid		:	㐫	-		$\stackrel{+}{4}$
${ }^{25}$	${ }^{ \pm} 85$	$\begin{aligned} & \text { Fluxgate } \\ & \text { CAS } \end{aligned}$	+5/0	2.5 V or $\mathrm{V}_{\text {ref }} \pm 0.625 \mathrm{~V}$	DC-300 (+-3dB)	0.8	$-40 . .+85$	-		-		- ${ }^{12}$	CASR 25-NP9)	
${ }^{25}$	± 85	$\begin{aligned} & \text { Fluxgate } \\ & \text { CAS } \end{aligned}$	+5/0	2.5 V or $\mathrm{Vexfet}^{\text {ret }} 0.625 \mathrm{~V}$	DC-300 (t-3dB)	0.8	$-40 . .+105$	-		\bullet		8	CKSR 25-NP ${ }^{\text {g }}$	
${ }^{25}$	± 75	$\begin{gathered} \text { Fluxgate } \\ \text { CAS } \end{gathered}$	+5/0	$2.5 \mathrm{v} \pm 0.625 \mathrm{~V}$	DC-300 (+-3dB)	0.8	$-40 . .+85$	-		\bullet		11	CAS 50-NP	
25	± 75	$\begin{gathered} \text { Fluxgate } \\ \text { CAS } \\ \hline \end{gathered}$	+5/0	2.5 V or $\mathrm{Vreft}^{0.625 V}$	DC-300 (+-3dB)	0.8	-40...85	-		-		- 12	CASR 50-NP9	
25	± 75	$\begin{aligned} & \text { Fluxgate } \\ & \text { CAS } \end{aligned}$	+5/0	2.5 V or $\mathrm{V}_{\text {ref }} \pm 0.625 \mathrm{~V}$	DC-300 (+-3dB)	0.8	-40...+105	\bullet		-		- 8	CKSR 50-NP9	
32	± 80	O/L	+5/0	2.5 V or $V_{\text {ref }} \pm 0.8 \mathrm{~V}$	DC-240 (-3dB)	1	-40...105	-		-		20	HLSR 32-P9)	
32	${ }^{ \pm} 80$	0/L	+5/0	2.5 V or $V_{\text {vef }} \pm 0.8 \mathrm{~V}$	DC-240 (-3dB)	1	-40...105	SmD		SMD		21	HLSR 32-SM)	
32	± 80	O/L	+3.3/0	1.65 V or $V_{\text {ref }} \pm 0.460 \mathrm{~V}$	DC-240 (-3dB)	1	$-40 . .+105$	-		\bullet		20	HLSR 32-P/SP33 ${ }^{\text {5 }}$	
32	± 80	o/L	+3.3/0	1.65 V or $V_{\text {ret }} \pm 0.460 \mathrm{~V}$	DC-240 (-3dB)	1	-40...+105	SmD		smb		21	$\begin{gathered} \text { HLSR 32-SM/ } \\ \text { SP33 } \left.{ }^{5}\right) \\ \hline \end{gathered}$	
${ }^{35}$	± 70	c/L	± 15	35 mA	DC-150 (-18B)	0.5	-25...70	-		-		- 17	LA 35-NP	
40	± 100	O/L	+5/0	2.5 V or $V_{\text {ref }} \pm 0.8 \mathrm{~V}$	DC-240 (-3dB)	1	-40...105	-		-		20	HLSR 40-Ps)	
40	± 100	O/L	+5/0	2.5 V or $V_{\text {ref }} \pm 0.8 \mathrm{~V}$	DC-240 (-3dB)	1	-40...+105	SMD		SMD		21	HLSR 40-SM ${ }^{\text { }}$	
40	± 100	O/L	+3.3/0	1.65 V or $V_{\text {vef }} \pm 0.460 \mathrm{~V}$	DC-240 (-3dB)	1	-40...+105	\bullet		-		20	HLSR 40-P/SP339	
40	± 100	O/L	+3.3/0	1.65 V or $\mathrm{V}_{\text {ref }} \pm 0.460 \mathrm{~V}$	DC-240 (-3dB)	1	-40...105	SMD		SMD		21	$\begin{gathered} \text { HLSR 40-SM/ } \\ \text { SP335 } \end{gathered}$	

Notes:

1) Small signal bandwidth to avoid excessive core heating at high frequency

$I_{P N}=50 \mathrm{~A} \ldots 88 \mathrm{~A}$
DRS / REU Open-loon Coction

$I_{P N}=50 \mathrm{~A} \ldots 88 \mathrm{~A}$					DRS / REU Open-loop							Closed-loop		Fuxgate	
	A		u_{c}	$\begin{gathered} V_{\text {oun }} \\ l_{\text {out }} \\ @_{\mathrm{PN}} \end{gathered}$	BW kHz		T_{A}	Connection				$\begin{aligned} & \frac{1}{2} \\ & \stackrel{0}{0} \\ & \stackrel{y}{2} \end{aligned}$		Type	¢
I_{PN}								Prima		Secorn	ndary				
A						\%	${ }^{\circ} \mathrm{C}$	\%		O	㐫				
50	± 70	c/L	$\pm 12 . .15$	50 mA	DC-200 (-1dB)	0.65 ¢	$-40 . .+85$		-	-		\bullet	24	LA 55-P	
50	± 70	c/L	$\pm 12 . .15$	50 mA	DC-200 (-1dB)	0.45 ¢	$-40 . .+85$		-	-		-	24	LA 55-P/SP23	
50	± 70	c/L	$\pm 12 . .15$	50 mA	DC-200 (-1dB)	0.65 ¢	$-40 . .+85$	-		-		-	25	LA 55-TP	
50	± 100	c/L	$\pm 12 . .15$	25 mA	DC-200 (-1dB)	0.65 ¢	$-40 . .+85$		-	-		-	24	LA 55-P/SP1	
50	± 100	c/L	$\pm 12 . .15$	25 mA	DC-200 (-1dB)	0.65 ¢	$-40 . .+85$	-		-		-	25	LA 55-TP/SP1	
50	± 100	c/L	$\pm 12 . .15$	25 mA	DC-200 (-1dB)	0.65 ¢	$-40 . .+85$	-		-		\bullet	25	LA 55-TP/SP27	
50	± 100	O/L	$\pm 12 . .15$	4 V	DC-10 (-18B) ${ }^{12}$	3.4	$-10 . . .+70$		-		-	-	26	HTR 50-SB	sc
50	± 110	c/	$\pm 12 . .15$	25 mA	DC-200 (-1dB)	0.3	$-25 . .+85$	-		-		-	27	LAH 50-P	
50	± 125	O/L	+5/0	$\begin{aligned} & 2.5 \mathrm{~V} \text { or } V_{\text {ref }} \\ & \pm 0.8 \mathrm{~V} \end{aligned}$	DC-240 (-3dB)	1	$-40 . .+105$	-		-			${ }^{2}$	HLSR 50-Ps)	
50	± 125	O/L	+5/0	$\begin{gathered} 2.5 \mathrm{~V} \text { or } \mathrm{V}_{\text {ed }} \\ \pm 0.88 \mathrm{~V} \end{gathered}$	DC-240 (-308)	1	$-40 . .+105$	SMD		SMD			21	HLSR 50-SM ${ }^{\text {F }}$	
50	± 125	O/L	+3.3/0	$\begin{aligned} & \begin{array}{l} 1.65 \mathrm{~V} \text { or } V_{\text {vef }} \\ \pm 0.460 \mathrm{~V} \end{array} \end{aligned}$	DC-240 (-3dB)	1	$-40 . .+105$	-		-			${ }^{20}$	$\begin{aligned} & \text { HLSRR 50-P/ } \\ & \text { SP333) } \end{aligned}$	
50	± 125	O/L	+3.3/0	$\begin{aligned} & \begin{array}{l} 1.65 \mathrm{~V} \text { or } V_{\text {ref }} \\ \\ 00.460 \mathrm{~V} \end{array} \end{aligned}$	DC-240 (-308)	1	$-40 . .+105$	SMD		SMD			21	$\begin{aligned} & \text { HLSR 50-SM/ } \\ & \text { SP33S) } \end{aligned}$	
50	± 150	$\begin{aligned} & \text { Fluxgate } \\ & \text { CAS } \end{aligned}$	+5/0	$2.5 \mathrm{~V} \pm 0.625 \mathrm{~V}$	$\begin{aligned} & \text { DC-300 } \\ & (+1-3 d B) \end{aligned}$	0.8	$-40 . .+85$	\bullet		-		-	11	CAS 50-NP	

Notes:

1) Small signal bandwidth to avoid excessive core heating at high frequency
2) Small signal bandwidt
3) Ref $_{w} \&$ Ref $_{\text {out }}$ modes
4) Accuracy calculated with max electrical offset instead of typical electrical offset $@ U_{c}= \pm 15 \mathrm{~V}$
$I_{P N}=50 \mathrm{~A} \ldots 88 \mathrm{~A}$
DRS / REU Open-loop Closed-loop Fluxgate

$\begin{aligned} & \mathrm{I}_{\mathrm{PW}} \\ & \mathrm{~A} \end{aligned}$	IPA	$\begin{aligned} & \text { ते } \\ & \frac{0}{0} \\ & \frac{5}{0} \\ & \stackrel{\omega}{\circ} \end{aligned}$	$\begin{aligned} & u_{c} \\ & v \end{aligned}$	$\begin{aligned} & \boldsymbol{v}_{\mathrm{out}} \\ & \mathrm{I}_{\mathrm{out}} \\ & \text { I }_{\mathrm{PN}} \end{aligned}$	BW kHz		T_{A}	Connection				$\begin{aligned} & \text { J. } \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{y}{3} \end{aligned}$	000$\frac{0}{5}$$\frac{0}{0}$응0	Type	¢
								Primary		Secondary					
						\%	${ }^{\circ} \mathrm{C}$	\%		O	㪯				
50	± 150	Fluxgate	+5/0	2.5 V or $\mathrm{V}_{\text {ef }}$ $\pm 0.625 \mathrm{~V}$	DC-300 (+-3dB)	0.8	$-40 . . .85$	-		\bullet		-	12	CASR 50-NP9)	
50	± 150	Fluxgate	+5/0	$\begin{aligned} & 2.5 \mathrm{~V} \text { or } \mathrm{V}_{\text {out }} \\ & \\ & 50.625 \mathrm{~V} \end{aligned}$	DC-300 (+-3dB)	0.8	$-40 . .+105$	-		-		-	8	CKSR 50-NP ${ }^{\text {s }}$	
50	± 150	o/L	$\pm 12 . .15$	4 V	DC-50 (-38B) ${ }^{\text {1 }}$	2.4	-25...85	-		-		\bullet	15	HXN 50-P	
50	± 150	O/L	± 15	4 V	DC-50 (-3dB) ${ }^{1}$	2	$-25 . .+85$		-		-	-	28	HAL 50-S	
50	± 150	O/L	± 15	4 V	DC-50 (-3dB) ${ }^{\text {1 }}$	2.5	-10...80		-		-	\bullet	29	HAS 50-S	
50	± 150	O/L	± 15	4 V	DC-50 (-3dB) ${ }^{1)}$	2.5	$-10 . . .80$		-	-		-	30	HAS 50-P	
50	± 150	o/L	$\pm 12 . .15$	4 V	DC $-50(-3 \mathrm{~dB})^{1)}$	2.75	$-40 . . .80$		-	-		-	31	HTB 50-P	
50	± 150	o/L	$\pm 12 . .15$	4 V	DC-50 (-38B ${ }^{12}$	2.75	$-40 . . .80$	\bullet		-		-	32	HTB 50-TP	
${ }^{50}$	± 150	O/L	+ 12...15	$\begin{aligned} & U_{c} / 2 \mathrm{~V}+/- \\ & 1.667 \mathrm{~V} \end{aligned}$	DC-50 (-3dB) ${ }^{12}$	1.5	$-25 . .+85$		-	\bullet		-	${ }^{33}$	HTB 50-P/SP5	
${ }^{50}$	± 150	O/L	+ 12...15	$\begin{aligned} & u_{U^{\prime} / 2 \mathrm{~V}+/-} \\ & 1.667 \mathrm{~V} \end{aligned}$	DC $-50(-3 \mathrm{~dB})^{1)}$	1.5	-25...+85	-		-		-	34	HTB 50-TP/SP5	
${ }^{50}$	± 150	O/L	+5/0	$\begin{gathered} 2.5 V \text { or } V_{\text {off }} \\ 00.625 \mathrm{~V} \end{gathered}$	DC-50 (-3dB) ${ }^{12}$	1.4	$-40 . . .+85$		\bullet		\bullet	-	35	HASS 50-S ${ }^{\text {5 }}$	
3×50	$\begin{aligned} & 3 \times \pm \\ & 150 \\ & \hline \end{aligned}$	O/L	$\pm 12 . .15$	$3 \times 4 \mathrm{~V}$	DC-10 (-3dB) ${ }^{\text {1 }}$	3.75	$-10 . . .+75$		-	-		-	23	HTT 50-P	тм
3×75	$\begin{aligned} & 3 \times \pm \\ & \hline 225 \end{aligned}$	O/L	$\pm 12 . .15$	$3 \times 4 \mathrm{~V}$	DC-10 (-3dB) ${ }^{\text {1) }}$	3.75	$-10 . .+75$		-	-		-	${ }^{23}$	HTT 75-P	тм
3×88	$\begin{aligned} & 3 \times \pm \pm \\ & 240 \\ & \end{aligned}$	c/L	± 15	$3 \times 22 \mathrm{~mA}$	DC-200 (-1dB)	1	$-40 . .+85$		\bullet		-		36	LTT 88 -S	тм

TM = Triplet Measurement
Dedicated data sheets are the only recognized reference documents for the given performances and data - Data sheets: www.lem.com
$I_{\mathrm{PN}}=100 \mathrm{~A} \ldots 200 \mathrm{~A}$

$I_{P N}=100$ A ... 200 A								DRS / REU Open-loop							
	A		$\begin{aligned} & u_{c} \\ & v \end{aligned}$	$\begin{gathered} V_{\text {out }} \\ { }_{\substack{\text { out }}} \\ @_{\mathrm{I}_{\mathrm{PN}}} \end{gathered}$	Bw kHz		T_{A} ${ }^{\circ} \mathrm{C}$	Connection						Type	¢
I_{PN}									nary		ndary				
A								$\begin{aligned} & \mathrm{O} \\ & \mathrm{Q} \end{aligned}$		\%	㐫				
100	± 200	O/L	$\pm 12 . .15$	4 V	$\mathrm{DC}-10(-\mathrm{daB})^{\text {P }}$	3.4	-10...70		-		-	-	26	HTR 100-SB	sc
100	± 300	O/L	± 15	4 V	DC-50 (-3dB) ${ }^{1)}$	2.7	-10...80		-		-	-	37	HAC 100-S	
100	± 300	O/L	± 15	4 V	DC-50 (-3dB) ${ }^{\text {1 }}$	1.75	-25... 85		-		-	-	28	HAL 100-S	
100	± 300	O/L	± 15	4 V	DC-50 (-3dB) ${ }^{11}$	1.75	$-25.1 .+85$		-		-	-	38	HTA 100-S	
100	± 300	O/L	± 15	4 V	DC -50 (-3dB) ${ }^{11}$	2.5	$-10 . .+80$		-		-	-	29	HAS 100-S	
100	± 300	O/L	± 15	4 V	DC-50 (-3dB) ${ }^{11}$	2.5	$-10 . .+80$		-	-		-	30	HAS 100-P	
100	± 300	O/L	$\pm 12 . .15$	4 V	DC $-50(-3 \mathrm{~dB})^{11}$	2.75	$-40 . .+80$		\bullet	-		-	31	HTB 100-P	
100	± 300	0/L	$\pm 12 . .15$	4 V	DC-50 (-3dB) ${ }^{11}$	2.75	$-40 . . .80$	-		-		-	32	HTB 100-TP	
100	± 300	O/L	+ 12...15		DC-50 (-3dB) ${ }^{\text {1) }}$	1.5	-25...+85		-	-		-	${ }^{33}$	HTB 100-P/SP5	
100	± 300	0/L	+ 12..15	$\begin{aligned} & u_{d} / 2 \mathrm{~V}+/- \\ & 1.667 \mathrm{~V} \end{aligned}$	DC-50 (-3dB) ${ }^{11}$	1.5	-25... +85	-		-		-	34	HTB 100-TP/SP5	
100	± 300	O/L	+5/0	$\underset{\substack{2.5 \mathrm{~V} \text { or } \mathrm{V}_{\text {ex }} \\ \pm 0.625 \mathrm{~V}}}{ }$	DC -50 (-3dB) ${ }^{11}$	1.4	$-40 . .+85$		\bullet		-	-	35	HASS 100-S ${ }^{\text {s }}$	
3×100	$3 \times \pm 300$	O/L	$\pm 12 . .15$	$3 \times 4 \mathrm{~V}$	DC-10 (-3dB) ${ }^{10}$	2.7	-10...75		-	-		-	${ }^{23}$	HTT 100-P	тм
150	± 450	O/L	$\pm 12 . .15$	4 V	DC -50 (-3dB) ${ }^{11}$	2.75	$-40 . .+80$		\bullet	\bullet		-	${ }^{31}$	HTB 150-P	
3×150	$3 x \pm 450$	O/L	$\pm 12 \ldots .15$	$3 \times 4 \mathrm{~V}$	DC-10 (-3dB) ${ }^{12}$	2.7	-10...75		-	-		-	${ }^{23}$	HTT 150-P	тм
200	± 300	0/L	$\pm 12 . .15$	4 V	DC-8 (-1dB) ${ }^{\text {P }}$	3.75	-10...70		\bullet		-	-	39	HOP 200-SB	sc
200	± 300	0/L	+5/0	$\begin{aligned} & \hline U_{\mathrm{C} / 2 \mathrm{Vor}} \\ & V_{\mathrm{ref}} \pm 1.25 \mathrm{~V} \end{aligned}$	DC-50 (-3dB) ${ }^{11}$	1.4	$-40 . .+105$		-	-		-	41	HTFS 200-P9)	
200	± 300	O/L	+5/0	$\begin{gathered} \mathrm{U}_{\mathrm{c} / 2 \mathrm{~V} \text { or }} \\ V_{\mathrm{ref}}+1.25 \mathrm{~V} \\ \hline \end{gathered}$	DC-50 (-3dB) ${ }^{12}$	1.4	-40...+105		\bullet	\bullet		\bullet	40	HTFS 200-P/SP29	
200	± 400	O/L	$\pm 12 . .15$	4 V	DC-10 (-1dB) ${ }^{\text {P }}$	3.4	-10...70		\bullet		-	-	26	HTR 200-SB	sc
200	± 500	0/L	$\pm 12 . .15$	4 V	DC-50 (-3dB) ${ }^{11}$	2.75	$-40 . . .80$		\bullet	\bullet		\bullet	31	HTB 200-P	

$I_{P N}=200 \mathrm{~A} . .300 \mathrm{~A}$
DRS / REU open-lop

I_{PN}	Ip		$\begin{aligned} & u_{c} \\ & v \end{aligned}$		BW kHz		T_{A} ${ }^{\circ} \mathrm{C}$	Connection				$\begin{aligned} & 1 \\ & \\ & 0 \\ & 0 \\ & 5 \end{aligned}$		Type	¢
								Primary		Secondary					
								$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{O} \\ & \hline \end{aligned}$	$\frac{\dot{\bar{\omega}}}{}$				
200	± 500	O/L	+ 12...15	$\begin{gathered} u_{0} / 2 v+1-67-1 \\ \\ \hline 1.667 \end{gathered}$	DC-50 (-3dB) ${ }^{\text {P }}$	1.5	$-25 . .+85$		-	-		\bullet	${ }^{33}$	HTB 200-P/SP5	
200	± 600	O/L	± 15	4 V	DC-50 (-3dB) ${ }^{\text {² }}$	2.7	$-10 . .180$		-		-	-	37	HAC 200-S	
200	± 600	O/L	± 15	4 V	DC-50 (-3dB) ${ }^{\text {1 }}$	1.75	$-25 . .+85$		-		-	-	28	HAL 200-S	
200	± 600	O/L	± 15	4 V	DC-50 (-3dB) ${ }^{\text {1 }}$	1.75	$-25 . .+85$		-		-	-	38	HTA 200-S	
200	± 600	O/L	± 15	4 V	DC-50 (-3dB) ${ }^{\text {1 }}$	2.5	$-10 . . .80$		\bullet		-	-	29	HAS 200-S	
200	± 600	O/L	± 15	4 V	DC-50 (-3dB) ${ }^{\text {1 }}$	2.5	$-10 . . .80$		-	-		-	30	HAS 200-P	
200	± 600	O/L	± 15	4 V	DC-25 (-3dB) ${ }^{\text {12 }}$	1.75	$-40 .+105$		\bullet		-	\bullet	42	HAT 200-S	
200	± 600	O/L	+5/0	$\underset{\substack{2.5 V \\ 0.625 \mathrm{~V} \\ \text { ou }}}{ }$	DC-50 (-3dB) ${ }^{\text {1 }}$	1.4	$-40 . .+85$		\bullet		-	\bullet	35	HASS 200-S)	
300	± 450	0/L	$\pm 12 . .15$	4 V	DC-8 (-1dB) ${ }^{\text {P }}$	3.75	$-10 . .+70$		\bullet		-	\bullet	39	HOP 300-SB	sc
300	± 600	O/L	$\pm 12 . .15$	4 V	DC-10 (-1dB) ${ }^{\text {P }}$	3.4	-10...70		-		-	-	26	HTR 300-SB	sc
300	± 600	O/L	$\pm 12 . .15$	4 V	DC-50 (-3dB) ${ }^{\text {P }}$	2.75	$-40 . .+80$		-	-		\bullet	31	нтв 300-P	
300	± 600	O/L	+ 12...15	$\begin{aligned} & u_{d .2} / 2 \mathrm{~V}+1- \\ & { }_{1.667} \end{aligned}$	DC-50 (-3dB) ${ }^{1 / 2}$	1.5	-25... +85		-	-		\bullet	33	HTB 300-P/SP5	
300	± 900	O/L	± 15	4 V	DC-50 (-3dB) ${ }^{12}$	2.7	$-10 . . .80$		-		-	-	37	HAC 300-s	
300	± 900	0/L	± 15	4 V	DC-50 (-3dB) ${ }^{\text {12 }}$	1.75	$-25 . .+85$		\bullet		-	-	${ }^{28}$	HAL 300-S	
300	± 900	O/L	± 15	4 V	DC-50 (-3dB) ${ }^{\text {12 }}$	1.75	$-25 . .+85$		-		-	-	38	HTA 300-S	
300	± 900	0/L	± 15	4 V	DC-50 (-3dB) ${ }^{13}$	2.5	$-10 . .+80$		-		-	-	29	HAS 300-S	
300	± 900	O/L	± 15	4 V	DC-50 (-3dB) ${ }^{\text {P }}$	2.5	-10...880		\bullet	-		\bullet	30	HAS 300-P	
300	± 900	O/L	+5/0	$\begin{aligned} & 2.5 \mathrm{~V} \text { or } V_{\text {vef }} \\ & \pm 0.625 \mathrm{~V} \end{aligned}$	DC-50 (-3dB) ${ }^{\text {1 }}$	1.4	$-40 . .+85$		-		-	-	35	HASS 300-S ${ }^{\text {a }}$	

Notes:

1) Small signal bandwidth to avoid excessive core heating at high frequency
2) $\operatorname{Ref}_{W} \& \operatorname{Ref}_{\text {out }}$ modes

Dedicated data sheets are the only recognized reference documents for the given performances and data - Data sheets: www.lem.com
$I_{P N}=100 \mathrm{~A} \ldots 150 \mathrm{~A}$
DRS／REU Cosed－lop

${ }^{\text {en }}$	I_{p} A		$\begin{gathered} u_{c} \\ v \end{gathered}$	$\begin{aligned} & V_{\text {out }} \\ & \mathrm{o}_{\mathrm{out}} \\ & {\text { @ } \mathrm{I}_{\mathrm{PN}}}^{2} \end{aligned}$	Bw kHz		T_{A}	Connection					000OOO을0	Type	¢
									nary	Seco					
						\％	${ }^{\circ} \mathrm{C}$	\％		\％	立				
100	± 150	C／L	$\pm 12 . .15$	50 mA	DC－200（－dB）	$0.45{ }^{\text {¢ }}$	$-40 . .+85$		－	－		－	24	LA 100－P	
100	± 150	C／L	$\pm 12 . .15$	50 mA	DC－200（－dB）	0.45 ）	$-40 . .+85$	－		－		－	25	LA 100－TP	
100	± 160	C／L	$\pm 12 . .15$	100 mA	DC－200（－dd）	${ }^{0.45{ }^{\text {¢ }}}$	$-25 . .+70$		－	\bullet		－	24	$\begin{aligned} & \text { LA 100-P// } \\ & \text { SP131 } \end{aligned}$	
100	± 160	C／L	$\pm 12 . .15$	50 mA	DC－200（－dB）	${ }^{0.3}$	$-25 . .+85$	－		\bullet		－	27	LAH 100－P	
100	± 200	C／L	$\pm 12 . .15$	100 mA	DC－100（－3dB）	0.4	$-40 . .+85$		－		\bullet	－	43	LF 205－S／SP3	
125	± 200	C／L	$\pm 12 . .15$	125 mA	DC－100（－dB）	0.8	$-40 . .+85$		－	－		－	47	LA 125－P	
125	± 200	C／L	$\pm 12 . .15$	62.5 mA	DC－100（－19B）	0.8	－25．．．85		－	－		－	47	LA 125－P／SP1	
125	± 200	C／L	$\pm 12 . .15$	125 mA	DC－100（－1dB）	0.8	$-25 . .+85$		－	－		－	48	LA 125－P／SP3	PC
125	± 300	C／L	$\pm 12 . .15$	62.5 mA	DC－100（－1dB）	0.8	$-40 . .+85$		－	\bullet		\bullet	47	LA 125－P／SP4	
125	± 200	C／L	$\pm 12 . .15$	125 mA	DC－100（－3dB）	0.41	$-40 . .+85$	－		－		－	49	LAH 125－P	
130	± 200	C／L	$\pm 12 . .15$	130 mA	DC－150（－1dB）	0.5	$-40 . . .85$		－	－		Pending	50	LA 130－P	
130	± 200	C／L	$\pm 12 . .15$	65 mA	DC－150（－1dB）	0.5	$-40 . .+85$		－	\bullet		Pending	50	LA 130－P／SP1	
150	± 212	c／L	$\pm 12 . .15$	75 mA	DC－150（－1dB）	0.5	$-40 . .+85$		\bullet	\bullet		Pending	51	LA 150－P	

$I_{P N}=150 \mathrm{~A} . . .366 \mathrm{~A}$
DRS／REU Cresel－lop

$\begin{gathered} I_{P N} \\ A \end{gathered}$	I_{p} A	$\begin{aligned} & \text { 지 } \\ & \text { 잉 } \\ & \stackrel{5}{0} \\ & \stackrel{\oplus}{\circ} \end{aligned}$	$\begin{aligned} & u_{c} \\ & v \end{aligned}$	$\begin{gathered} v_{\text {out }} \\ { }_{\substack{\text { out }}} \\ @_{\mathrm{PN}} \end{gathered}$	Bw kHz		T_{A}	Connection				$\begin{aligned} & \text { د⿱丷口犬 } \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{y}{5} \end{aligned}$	0 0 0 0 0 $\frac{0}{0}$ 0 0	Type	
								Primary		Secondary					
						\％	${ }^{\circ} \mathrm{C}$	\％		0	彦				
150	± 212	c／	$\pm 12 . .15$	150 mA	DC－150（－1dB）	0.5	－40．．．＋85		－	\bullet		Pending	51	LA 150－P／SP1	
150	± 212	c／L	$\pm 12 . .15$	75 mA	DC－150（－1dB）	0.5	－40．．．＋85	－		\bullet		Pending	52	LA 150－TP	
200	± 300	C／L	$\pm 12 . .15$	100 mA	DC－100（－1dB）	0.65	－40．．．＋85		－	－		－	47	LA 200－P	
200	± 300	C／L	$\pm 12 . .15$	100 mA	DC－100（－1dB）	0.65	－25．．．＋85		－	－		－	47	LA 200－P／SP4	
200	± 300	c／	$\pm 12 . .15$	100 mA	DC－100（－1dB）	0.45	$-25 . . .85$		－		－		53	LAF 200－S	
200	± 420	C／L	$\pm 12 . .15$	100 mA	DC－100（－3dB）	0.4	－40．．．＋85		－		－	\bullet	43	LF 205－S	
200	± 420	C／L	$\pm 12 . .15$	100 mA	DC－100（－3dB）	0.4	$-40 . .+85$		－	－		\bullet	45	LF 205－P	
200	± 420	C／L	$\pm 12 . .15$	100 mA	DC－100（－3dB）	0.4	－40．．．＋85		－		－	－	44	LF 205－S／SP1	
200	± 420	C／L	$\pm 12 . .15$	100 mA	DC－100（－3dB）	0.4	$-40 . .+85$		－	－		\bullet	46	LF 205－P／SP1	
300	± 500	C／L	$\pm 12 . .20$	150 mA	DC－100（－dAB）	0.3	$-40 . .+85$		－		－	－	54	LF 305－S	
300	± 500	C／L	$\pm 12 \ldots 20$	150 mA	DC－100（－3dB）	0.3	$-40 . .+85$		－		\bullet	\bullet	55	$\begin{aligned} & \text { LF } 305-\mathrm{SI} \\ & \mathrm{SPP10} \end{aligned}$	
300	± 700	C／L	± 15	150 mA	DC－50（－3dB）	0.4	－40．．．85		－		－	－	56	LA 306－S	
366	± 950	c／	± 15	183 mA	DC－100（－19B）	0.3	$-10 . .+70$		\bullet		－		57	LT 305－S	

$I_{P N}=400 \mathrm{~A} \ldots 500 \mathrm{~A}$
DRS / REU penalop

400	± 600	O/L	$\pm 12 . .15$	4 V	DC-50 (-3dB) ${ }^{\text {1 }}$	2.75	-40...80	-	-		\bullet	31	нTB 400-P	
400	± 600	O/L	+ $12 . .15$	$u_{\mathrm{d}} / 2 \mathrm{~V}+1-1.667 \mathrm{~V}$	DC-50 (-3dB) ${ }^{\text {P }}$	1.5	-25... 85	-	-		-	33	HTB 400-P/SP5	
400	± 600	O/L	$\pm 12 . .15$	4 V	DC-8 (-1dB) ${ }^{\text {1 }}$	3.75	-10...+70	-		-	-	39	HOP 400-SB	sc
400	± 600	O/L	+5/0	$\begin{aligned} & u_{d^{\prime} / 2 \mathrm{Vor}}^{11.25 \mathrm{~V} \text { ef }} \end{aligned}$	DC-50 (-3dB) ${ }^{12}$	1.4	$-40 . .+105$	-	-		-	41	HTFS 400-Ps)	
400	± 600	O/L	+5/0	$\begin{aligned} & u_{d_{d} / 2 \mathrm{~V} \text { or } V_{\text {vef }}}{ }^{1.255 \mathrm{~V}} \end{aligned}$	DC-50 (-3dB) ${ }^{\text {1) }}$	1.4	$-40 . .+105$	-	-		-	40	$\begin{aligned} & \text { HTTSS 400-P/ } \\ & \left.S_{P 25}\right)^{\prime} \end{aligned}$	
400	± 800	O/L	$\pm 12 . .15$	4 V	DC-10 (-1dB) ${ }^{10}$	3.4	-10...70	-		-	-	26	HTR 400-SB	sc
400	± 900	O/L	± 15	4 V	DC-50 (-3dB) ${ }^{\text {P }}$	2.5	-10...+80	-		-	\bullet	29	HAS 400-S	
400	± 900	O/L	± 15	4 V	DC-50 (-3dB) ${ }^{\text {1 }}$	2.5	-10....80	-	-		-	30	HAS 400-P	
400	± 900	O/L	+5/0	$\begin{aligned} & 2.5 \mathrm{~V} \text { or } \mathrm{v}_{\text {ef }} \\ & \pm 0.625 \mathrm{~V} \end{aligned}$	DC-50 (-3dB) ${ }^{\text {1) }}$	1.4	$-40 . .+85$	\bullet		-	-	35	HASS 400-S9)	
400	± 1000	O/L	± 15	4 V	DC-50 (-3dB) ${ }^{\text {1 }}$	1.75	-25...85	-		-	-	28	HAL 400-S	
400	± 1000	O/L	± 15	4 V	DC-50 (-3dB) ${ }^{\text {d }}$	1.75	-25...+85	-		-	\bullet	38	HTA 400-S	
400	± 1200	O/L	± 15	4 V	DC-50 (-3dB) ${ }^{\text {1 }}$	2.7	-10....80	-		-	-	37	HAC 400-s	
400	± 1200	O/L	± 15	4 V	DC-25 (-3dB) ${ }^{\text {P }}$	1.75	$-40 . .+105$	-		-	\bullet	42	HAT 400-S	
500	± 750	O/L	$\pm 12 . .15$	4 V	DC-8 (-1dB) ${ }^{\text {1 }}$	3.75	-10...+70	-		-	-	39	HOP 500-SB	sc
500	± 800	C/	$\pm 15 . . .24$	100 mA	DC-100 (-1dB)	0.3	$-40 . . .70$	-		-	\bullet	58	LF 505-S	
500	± 800	C/	$\pm 15 . . .24$	100 mA	DC-100 (-1dB)	0.3	$-10 . .+70$	-		\bullet	-	59	LF 505-S/SP15	
500	± 900	O/L	± 15	4 V	DC-50 (-3dB) ${ }^{\text {d }}$	2.5	-10....80	-		-	\bullet	29	HAS 500-S	
500	± 900	O/L	± 15	4 V	DC-50 (-3dB) ${ }^{10}$	2.5	-10....80	-	-		-	30	HAS 500-P	
500	± 900	O/L	+5/0	$\underset{\substack{2.5 \mathrm{~V} \text { or } \mathrm{V}_{\text {ex }} \\ \text { +0.625 }}}{ }$	DC-50 (-3dB) ${ }^{\text {1) }}$	1.4	$-40 . .+85$	-		\bullet	\bullet	35	HASS 500-S9)	
500	± 1000	0/L	$\pm 12 . .15$	4 V	DC-10 (-1dB) ${ }^{\text {P }}$	2.5	$-10 . .+70$	-		-	-	60	HOP 500-SB/ SP1	sc

Notes:

1) Small signal bandwidth to avoid excessive core heating at high frequency
2) $\operatorname{Ref}_{W} \& \operatorname{Ref}_{\text {out }}$ modes
$\left.\right|^{30}$
$I_{P N}=500 \mathrm{~A} . . .800 \mathrm{~A}$
DRS / REU Open-lop

500	± 1000	o/L	$\pm 12 . .15$	4 V	DC-10 (-1dB) ${ }^{\text {P }}$	3.4	-10...70	\bullet		\bullet	-	26	HTR 500-SB	sc
500	± 1000	O/L	± 15	4 V	DC-50 (-3dB) ${ }^{\text {1 }}$	1.75	-25...85	-		-	-	28	HAL 500-S	
500	± 1000	o/L	± 15	4 V	DC-50 (-3dB) ${ }^{\text {2 }}$	1.75	-25...85	-		-	-	38	HTA 500-S	
500	± 1500	o/L	± 15	4 V	DC-50 (-3dB) ${ }^{\text {12 }}$	2.7	$-10 . .+80$	-		-	-	${ }^{37}$	HAC 500-s	
500	± 1500	O/L	± 15	4 V	DC-25 (-3dB) ${ }^{\text {2 }}$	1.75	-40...+105	-		-	-	42	HAT 500-S	
500	± 1500	O/L	± 15	4 V	DC-25 (-3dB) ${ }^{\text {2 }}$	2.75	$-25 . .+85$	-		-	-	61	hax 500-S	
600	± 900	O/L	$\pm 12 \ldots .15$	4 V	DC-8 (-1dB) ${ }^{\text {d }}$	3.75	$-10 . .+70$	-		-	-	39	HOP 600-SB	sc
600	± 900	o/L	+5/0	$\begin{gathered} U_{\mathrm{C}^{\prime} / 2 \mathrm{~V} \text { or }} \mathrm{V}_{\text {ref }} \\ \pm 1.25 \mathrm{~V} \end{gathered}$	DC-50 (-3dB) ${ }^{12}$	1.4	-40...+105	-	-		-	41	HTFS 600-P9)	
600	± 900	O/L	± 15	4 V	DC-50 (-3dB) ${ }^{\text {P }}$	2.5	-10...80	\bullet		-	-	29	HAS 600-S	
600	± 900	O/L	± 15	4 V	DC-50 (-3dB) ${ }^{\text {² }}$	2.5	-10...+80	-	\bullet		\bullet	30	HAS 600-P	
600	± 900	O/L	+5/0	$\begin{aligned} & 2.5 \mathrm{~V} \text { or } V_{\text {ref }} \\ & \pm 0.625 \mathrm{Vex} \end{aligned}$	DC-50 (-3dB) ${ }^{12}$	1.4	-40... +85	-		\bullet	-	35	HASS 600-Ss	
600	± 1000	O/L	± 15	4 V	DC-50 (-3dB) ${ }^{\text {P }}$	1.75	-25...85	\bullet		\bullet	\bullet	28	HAL 600-S	
600	± 1000	O/L	± 15	4 V	DC-50 (-3dB) ${ }^{12}$	1.75	$-25 . .+85$	\bullet		-	-	38	HTA 600-S	
600	± 1800	O/L	± 15	4 V	DC -50 (-3dB) ${ }^{12}$	2.7	-10...80	\bullet		-	-	37	HAC 600-S	
600	± 1800	O/L	± 15	4 V	DC-22 (-3dB) ${ }^{\text {2 }}$	1.75	-40...105	\bullet		-	\bullet	42	HAT 600-S	
800	± 1200	o/L	+5/0	$\begin{gathered} U_{\mathrm{d}^{\prime} / 2 \mathrm{~V} \text { or } V_{\text {vef }}} \pm 1.25 \mathrm{~V} \end{gathered}$	DC-50 (-3dB) ${ }^{\text {2 }}$	1.4	-40...105	-	-		-	41	HTFS 800-P9)	
800	± 1200	o/L	+5/0	$\begin{gathered} U_{\mathrm{U}_{\mathrm{C}} 2 \mathrm{~V} \text { or } \mathrm{V}_{\text {ef }}}+1.25 \mathrm{~V} \\ \hline \end{gathered}$	DC-50 (-3dB) ${ }^{\text {P }}$	1.4	-40...105	\bullet	-		\bullet	40	$\begin{gathered} \text { HTFS 800-P/ } \\ \text { SP2 }^{5} \end{gathered}$	
800	± 1600	O/L	$\pm 12 . .15$	4 V	DC-10 (-1dB) ${ }^{12}$	2.5	$-10 . .+70$	-		-	\bullet	60	HOP 800-SB	sc
800	± 1800	O/L	± 15	4 V	DC-50 (-3dB) ${ }^{\text {2 }}$	2.7	-10...+80	\bullet		-	-	37	HAC 800-s	
800	± 2400	O/L	± 15	4 V	DC-25 (-3dB) ${ }^{\text {2 }}$	1.75	-40...105	-		\bullet	\bullet	42	HAT 800-S	

$I_{P N}=500 A_{A C} \ldots 2000 A_{A C}$
DRS / REU

$\mathrm{I}_{\mathrm{PN}}$$A_{\text {AC }}$		$u_{\text {c }}$	$V_{\text {out }}$	Bw		T_{A}	Connection						Type	W
							Primary		Secondary					
			$¢_{\text {F }}$		\%	©	©		$\begin{aligned} & 00 \\ & 0 \\ & \hline \end{aligned}$					
500	Rogowski	$\begin{gathered} \text { Self } \\ \text { powered } \end{gathered}$		700 (+3dB)	0.65477	-10...65		$\begin{aligned} & \text { Split core } \\ & \qquad 55 \mathrm{~mm} \\ & \hline \text { Max } \end{aligned}$		1.5 m cable	-	62	RT 500	
500	Rogowski	$\begin{gathered} \text { Self } \\ \text { powered } \end{gathered}$		700 (+3dB)	0.80 97)	-10...65		$\begin{aligned} & \text { Split core } \\ & \varnothing 55 \mathrm{~mm} \end{aligned}$ Max		$\begin{gathered} 3 \mathrm{~m} \\ \text { cable } \end{gathered}$	-	63	RT 500/SP1	
2000	Rogowski	Self powered		500 (+3dB)	$0.65{ }^{\text {977 }}$	-10...65		Split core $\varnothing 125 \mathrm{~mm}$ Max		1.5 m cable	-	64	RT 2000	
2000	Rogowski	$\begin{gathered} \text { Self } \\ \text { powered } \end{gathered}$		430 (+3dB)	0.897	-10...65		$\begin{aligned} & \text { Split core } \\ & \varnothing 125 \mathrm{~mm} \\ & \text { Max } \end{aligned}$		$\begin{gathered} 3 \mathrm{~m} \\ \text { cable } \end{gathered}$	\bullet	65	RT 2000/SP1	

$\mathrm{I}_{\mathrm{PN}}=1000 \mathrm{~A} \ldots 2000 \mathrm{~A}$

I_{pN}	I_{p}		$u_{\text {c }}$	$\begin{aligned} & V_{\text {out }} \\ & I_{\text {out }} \end{aligned}$	BW		T_{A}	Connection				$\begin{aligned} & \frac{1}{o} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\circ}{3} \end{aligned}$		Type	辰
								Primary		Secondary					
A	A		v	© I_{PN}	kHz	\%	${ }^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{m} \\ & 0 \end{aligned}$		$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$	兹				
1000	± 1000	0/L	± 15	4 V	DC-50 (-3dB) ${ }^{11}$	1.75	-25...85		-		-	-	38	HTA 1000-S	
1000	± 1500	C/L	$\pm 15 . . .24$	200 mA	DC-150 (-1dB)	0.3	$-40 . .185$		-		-	-	66	LF 1005-S	
1000	± 1500	C/L	$\pm 15 . . .24$	200 mA	DC-150 (-1dB)	0.3	-10...185		-		\bullet	-	67	LF 1005-S/SP22	
1000	± 2000	O/L	$\pm 12 . .15$	4 V	DC-10 (-1dB) ${ }^{\text {P }}$	2.5	-10...40		-		-	-	60	HOP 1000-SB	sc
1000	± 2500	0/L	± 15	4 V	DC-25 (-3dB) ${ }^{11}$	1.75	-40...105		\bullet		-	-	42	HAT 1000-S	
1000	± 3000	O/L	± 15	4 V	DC-25 (-3dB) ${ }^{\text {1 }}$	2.75	-25...85		-		-	-	61	Hax 1000-s	
1200	± 2500	0/L	± 15	4 V	DC-25 (-3dB) ${ }^{11}$	1.75	$-40 . .+105$		\bullet		\bullet	-	42	HAT 1200-S	
1500	± 2500	0/L	± 15	4 V	DC-25 (-3dB) ${ }^{\text {1 }}$	1.75	-40...105		\bullet		-	-	42	HAT 1500-S	
1500	± 3000	O/L	$\pm 12 . .15$	4 V	DC-10 (-1dB) ${ }^{\text {P }}$	2.5	$-10 . . .+70$		\bullet		-	-	60	HOP 1500-SB	sc
1500	± 4500	0/L	± 15	4 V	DC-25 (-3dB) ${ }^{11}$	2.75	-25...185		\bullet		\bullet	-	61	HAX 1500-s	
2000	± 3000	O/L	$\pm 12 . .15$	4 V	DC-10 (-1dB) ${ }^{\text {1 }}$	2.5	-10...70		\bullet		-	-	60	HOP 2000-SB	sc
2000	± 3000	0/L	$\pm 12 . .15$	4 V	DC-4 (-1dB) ${ }^{\text {P }}$	2.5	-10...70		\bullet		-	-	68	HOP 2000-SB/SP1	sc
2000	± 3000	C/L	$\pm 15 . . .24$	400 mA	DC-100 (-1dB)	0.2	-40...85		\bullet		-	-	69	LF 2005-S	

Notes:

Notes: Small signal bandwidth to avoid
excessive core heating at high frequency
2) Instantaneous
3) For sinusoidal wave (f in Hz)
4) $M=$ Transfer ratio $0.064 \mu \mathrm{H}(+/-5 \%)$:

RT models are provided with up to
5% manufacturing tolerance
7) Max positioning error
8) $40 \mathrm{~A}_{\text {gus }}$
9) $X_{6}=$ Global accuracy
$I_{P N}=2000 \mathrm{~A} \ldots 20000 \mathrm{~A}$ DRS / REU

I_{PN} A	I_{p} A		$\begin{aligned} & u_{c} \\ & v \end{aligned}$		BW kHz		T_{A} ${ }^{\circ} \mathrm{C}$	Connection				$\begin{aligned} & \frac{1}{2} \\ & \stackrel{\rightharpoonup}{c} \\ & \stackrel{y}{3} \end{aligned}$	0 0	Type	¢
								Primary		Secondary					
								Oi		$\begin{aligned} & \mathrm{O} \\ & \mathrm{Q} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\dot{\phi}} \\ & \stackrel{\rightharpoonup}{\overline{0}} \end{aligned}$				
2000	± 5500	0/L	± 15	4 V	DC-25 (-3dB) ${ }^{1 / 2}$	2.75	-25...85		-		-	-	61	HAX 2000-s	
2000	± 5500	O/L	± 15	4 V	DC- $25(-\mathrm{dBB})^{\text { }}$	2.75	-10...80		-		-		70	HAXC 2000-s	
2500	± 5500	0/L	± 15	4 V	DC -25 (-3dB) ${ }^{10}$	2.75	-25...+85		\bullet		-	-	61	HAX 2500-S	
4000	± 4000	O/L	± 15	10 V	DC-3 (-3dB) ${ }^{\text {1 }}$	2	-25...85		-		-		71	HAZ 4000-Sb	
4000	± 4000	O/L	± 15	20 mA	DC-3 (-3dB) ${ }^{\text {d }}$	2	-25...+85		\bullet		-		71	HAZ 4000-SBI	
4000	± 4000	o/L	± 15	$\begin{array}{r} 4 \mathrm{~mA} @-1_{\mathrm{PN}} \\ 20 \mathrm{~mA} \text { + } \mathrm{I}_{\mathrm{PN}} \\ \hline \end{array}$	DC-3 (-3dB) ${ }^{1}$	2	-25...+85		-		-		71	$\begin{array}{\|c} \hline \text { HAZ 4000-SB// } \\ \hline \text { SP1 } \end{array}$	
4000	± 6000	C/L	± 24	800 mA	DC-100 (-1dB)	0.3	-25...+70		-		\bullet		72	LT 4000-S	
4000	± 6000	C/L	± 24	800 mA	DC-100 (-1dB)	${ }^{0.3}$	-25...70		-		-		73	LT 4000-T	
4000	± 12000	$\underset{\text { IT }}{\text { Fluxgate }}$	± 24	1600 mA	DC-50(19B) ${ }^{\text {a }}$	0.06)	-40...+70		-		\bullet		74	ITL 4000-S	
6000	± 6000	O/L	± 15	10 V	DC-3 (-3dB) ${ }^{1)}$	2	-25...85		-		-		71	HAZ 6000-SB	
6000	± 6000	0/L	± 15	20 mA	DC-3 (-3dB) ${ }^{\text {1 }}$	2	$-25 . .+85$		\bullet		-		71	HAZ 6000-SBI	
6000	± 6000	o/L	± 15	$4 \mathrm{mA@}-\mathrm{I}_{\mathrm{pN}}$ 20 mA @ +1 I_{PN}	DC-3 (-3dB) ${ }^{1}$	2	-25...85		-		\bullet		71	$\begin{gathered} \hline \text { HAZ } 6000-\text { SBI/ } \\ \text { SP1 } \end{gathered}$	
10000	± 10000	O/L	± 15	10 V	DC-3 (-3dB) ${ }^{\text {1 }}$	2	-25...85		\bullet		-		71	HAZ 10000-SB	
10000	± 10000	0/L	± 15	20 mA	DC-3 (-3dB) ${ }^{\text {1 }}$	2	-25...+85		-		-		71	HAZ 10000-SBI	
10000	± 10000	o/L	± 15	4 mA @ - I_{PN} 20 mA @ $+\mathrm{l}_{\text {PN }}$	DC-3 (-3dB) ${ }^{1}$	2	-25...+85		-		\bullet		71		
10000	± 15000	c/L	$\pm 48 . .60$	1 A	DC-100 (-1dB)	0.3	-25...+70		-		-		75	LT 10000-S	
12000	± 12000	O/L	± 15	10 V	DC-3 (-3dB) ${ }^{\text {1 }}$	2	-25...85		\bullet		-		71	HAZ 12000-SB	
12000	± 12000	o/L	± 15	20 mA	DC-3 (-3dB) ${ }^{\text {1 }}$	2	$-25 . .+85$		-		-		71	HAZ 12000-SBI	
12000	± 12000	0/L	± 15	$\begin{aligned} & 4 \mathrm{~mA} \text { Q- } \mathrm{I}_{\mathrm{PN}} \\ & 20 \mathrm{~mA}+\mathrm{l}_{\mathrm{PN}} \\ & \hline \end{aligned}$	DC-3 (-3dB) ${ }^{1}$	2	-25...+85		-		\bullet		71	$\begin{gathered} \hline \text { HAZ } 12000-\mathrm{SBI/} \\ \mathrm{SP} 1 \end{gathered}$	
14000	± 14000	oh	± 15	10 V	DC-3 (-3dB) ${ }^{1}$	2	$-25 . .+85$		-		-		71	HAZ 14000-SB	
14000	± 14000	oh	± 15	20 mA	DC-3 (-3dB) ${ }^{\text {1 }}$	2	$-25 . .+85$		\bullet		\bullet		71	HAZ 14000-SBI	
14000	± 14000	O/L	± 15	$\begin{array}{\|c\|} \hline 4 \mathrm{~mA} @-\mathrm{I}_{\mathrm{PN}} \\ 20 \mathrm{~mA} @+1_{\mathrm{PN}} \\ \hline \end{array}$	DC-3 (-3dB) ${ }^{1}$	2	-25...+85		\bullet		\bullet		71	$\begin{array}{\|l\|l\|} \hline \text { HAZ 14000-SB// } \\ \text { SP1 } \end{array}$	
20000	± 20000	O/L	± 15	10 V	DC -3 (-3dB) ${ }^{1}$	2	$-25 . .+85$		-		\bullet		71	HAZ 20000-SB	
20000	± 20000	O/L	± 15	20 mA	DC-3 (-3dB) ${ }^{1}$	2	-25...+85		\bullet		\bullet		71	HAZ 20000-SBI	
20000	± 20000	0/L	± 15	$\begin{aligned} & 4 \mathrm{~mA} Q-\mathrm{l}_{\mathrm{PN}} \\ & 20 \mathrm{~mA} Q+\mathrm{t}_{\mathrm{NN}} \\ & \hline 0 \mathrm{~mA} \end{aligned}$	DC-3 (-3dB) ${ }^{1)}$	2	-25...+85		-		\bullet		71		

Current Transducers-Minisens

DRS / REU
Minisens - FHS model
From 2 to 100 Amps

To help your innovation,

we make ourselves small.

raditional measurement systems are not used in markets such as low power domestic electrical products and air conditioning systems for a number of reasons. If isolation also necessary, adding to the cost and buk For current measurements over approximately 10A the losses in the shunt become significant resulting in an unacceptable temperature rise. At lower current levels, the shunt will need to have a high resistance to ensure that its output is not too small. Generally, an amplifier may also be needed. Until today, these factors have been major limitations for the use of current measurement in smaller electrica systems. However, there is a growing demand for current electric motors becomes more popular, for greate control of speed and position, and improved energ efficiency. Fortunately, new techniques allow producing smaller and lower-cost transducers that can make curre measurement a reality in such system

The trend in power electronics is not different to that in other electronics fields: a greater degree of integration ,
AC and DC isolated current murrent transducer for KZ , shows the way. This new product combines all the necessary electronics with a Hall-effect sensor and magnetic concentrators in a single eight-pin, surfacemount package (Fig. 1): A step towards miniaturization and manufacturing cost reduction (as part of a standard PCB ssembly proces
It can be isolated simply by mounting it on a printed the current to be measured, does not suffer from losses and can make use of PCB design techniques to adjus sensitivity and therefore remove the need for an amplifier.

Working principle:
Minisens/FHS converts the magnetic field of a sensed current into a voltage output. This 'primary' current flow in a cable or PCB track near the IC and is electrically isolated from it. Hall effect devices integrated in th being focused in the region of the Hall cells by magnetic concentrators placed on top of the IC.
The IC sensitivity to the magnetic field of the primary current is $600 \mathrm{mV} / \mathrm{mT}$ max.

This is the basic working principle of the Hall effect open-loop technology, but all incorporated into a single small IC package.
The current sensed can be either positive or negative.
The polarity of the magnetic field is detected to generate either a positive or negative voltage output around a voltag reference defined as the initial offset at no field. The standard initial offset is 2.5 V (interna
reference). The user can specify an external reference between +2 and +2.8 V .
It is manufactured in a standard CMOS process and assembled in a SO8-IC package.
Design considerations:
The most common way to use Minisens is to locate it over a PCB track that is carrying the current that needs to b measured. To optimise the function of the transducer some simple rules need to be applied to the track
dimensions. By varying the PCB and track configuration it is possible to measure currents ranging from 2 to 100 Amps. One possible configuration places the IC directly over a single PCB track (Fig. 2).

In this configuration, isolation is provided by the distance between the pins of the transducer and the track, an currents in the range from 2 to 20 A can be measured. Insulation can be improved by placing the transducer on the opposite side of the board, but still directly ove the line of the track. The thickness of the board and th influence the distance between the sensing element (located into the IC) and the position of the primary conductor. Sensitivity is also affected by the width of

Fig. 2. One possible underneath the Minisens
the track (Fig. 3). It is important to note that sensitivity is greater for thinner tracks. However, the thinner the track,

Fig.3: Sensitivity (mV/A) versus track width and distance between the track and the sensing elements.

The maximum current that can be safely applied continuously is determined by the temperature rise of the track and the ambient temperature. The use of a track with varying width gives the best combination
of sensitivity and track temperature rise. To maintain emperature levels, the width, thickness and shape of the rack are very important. Minisens' maximum operating emperature is $125^{\circ} \mathrm{C}$.
For low currents (under 10A), it is advisable to make several turns with the primary track or to use a narrow rack to increase the magnetic field generated by the primary current.

As with a single track, it is better to have wider tracks rise) (Figs 4 Mind 5). ise) (Figs. 4 and 5).
This configuration is also possible on the opposite side of he PCB to the Minisens providing then a higher insulation onfiguration (Fig.5) as creepage and clearance distanc re improved (longer)
The sensitivity can be increased further by other techniques, such as using a "jumper" (wire) over the
Minisens to create a loop with the PCB track, or multiple turns can be implemented in different PCB layers. Larger currents can be measured by positioning the transducer farther from the primary conductor or by using a wider designer's control, and can lead to needs for insulation, ominal current to measure, sensitivity optimisation, etc. his is full design flexibility.

Special features for added value: wo outputs are available: one filtered, to limit the noise bandwidth, and one unfiltered which has a response
 protection) or threshold detection.
Minisens operates from a +5 V power supply. To reduce power consumption in sensitive applications, it can be witched to a standby mode by means of ar extern microamps.
In addition, a special care to the adjacent perturbing (stray) fields has to be brought.

Figs. 4 and 5: Possible "multi-turn" designs.

Current Transducers-Minisens

Minisens overall accuracy

In concrete application on a PCB

Overall accuracy (\% of I_{PN}) At $+25^{\circ} \mathrm{C}$ (Initial offset compensated):
Over temperature range $\left(\ldots+85^{\circ} \mathrm{C}\right)$: Over temperature range ($\ldots+85^{\circ} \mathrm{C}$): With calibration
(over temperature range ($\ldots+85^{\circ} \mathrm{C}$)

These mechanical parameters must be closely controlled in the production process. Alternatively, in-circuit avoid most of these errors.

Evaluate Minisens in your application: Evaluation kits
Several PCBs (Figs. 6 and 7) have been developed to demonstrate Minisens as a current transducer in different applications, and to validate simulations which were made
to predict the transducer sensitivity: These are available on request for application testing.
LEM design guides are also available to orientate and advise PCB designers in the building of their PCBs when using Minisens, in order to optimise the use of the
transducer (on request). transducer (on request)
Two typical examples will show the advantages offered by Minisens in today's applications:

Washing Machines:
Designers of modern washing machines are looking for more accurate control of the electric motor, to save

Fig. 6: $\underset{(0.4 \mathrm{~mm} \text { clearance/creepage) }}{\text { Minisens } \text { kits with low isolation }}$

| | Kit 4 | Kit 6 | Kit 7 |
| :--- | :---: | :---: | :---: | :---: |

protect the environment by adjusting washing time and water usage. They are also aiming to improve the performance of the machine, in terms of out-of balance detection, vibration reduction, different programs for different types of clothes
and noise reduction. An inverter-based and noise reduction. An inverter-based
system offers this finer control, allowing the designer to have both new and improved functions. Such a system needs accurate measurement of motor current, and two Minisens transducers can be mounted directly onto the control PCB to

Air-conditioning units
Traditionally, air-conditioning units have relied on simple on/off control of the motor. However, this has resulted in a wide variation of temperature and has required a relatively large motor, which is either off or running at full power

- resulting in a lot of noise. Modern air conditioners use - resulting in a lot of noise. Modern air conditioners use inverter control, starting the motor at full speed to adjust
the temperature coarsely and then reducing the speed and oscillating closely around the target temperature (Fig. 9).
Such a system produces less noise, requires less power to maintain the target temperature, and can use a smaller motor. Japanese air-conditioner manufacturers have already moved to this method and those in the United tates, China and Europe are now following

Low cost UPSs as well as battery chargers

Fig.9: Inverter control vs. conventional control
$I_{P N}=2$ A ．．． 2000 A
DRS／REU／

										R		R	，	－
	$\begin{aligned} & \mathrm{I}_{\mathrm{PN}} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { 잉 } \\ & \stackrel{\circ}{\circ} \\ & \stackrel{7}{0} \\ & \stackrel{\omega}{0} \end{aligned}$	u_{c}	BW kHz	$\begin{array}{\|c\|} \hline x @ \\ 1_{\mathrm{PN}} \\ T_{A}= \\ 25^{\circ} \mathrm{C} \\ \hline \% \\ \hline \end{array}$	T_{A}		$\left\|\begin{array}{l} \frac{0}{\circ} \\ 0 \\ \frac{1}{⿳ 亠 口 冋 口 口 刂} \end{array}\right\|$		$\begin{aligned} & \text { 亳 } \\ & \frac{訁}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{3} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{y}{3} \end{aligned}$		Type	Features
	50	Ст	$\left\lvert\, \begin{gathered} \text { Self } \\ \text { powered } \end{gathered}\right.$	0．05．．．0．06	1	－20．．．＋70	${ }^{\circ} 8$	\bullet		0－16mA	\square	155	TT 50－SD	
	100	ст	$\begin{gathered} \text { Self } \\ \text { powered } \end{gathered}$	0．05．．．0．06	1	－20．．．70	016	\bullet		0－33mA	\square	156	TT 100－SD	
Ac rms	$\begin{array}{\|c\|} \hline 5,10,20,50, \\ 100,150 \end{array}$	ст	$\begin{array}{\|c\|} \hline \text { Self } \\ \text { powered } \end{array}$	0．05．．．0．06	1．5 ${ }^{\text {a }}$	－20．．．60	016	\bullet		$0-5 / 10 \mathrm{~V}_{\text {Dc }}$	\square	${ }^{157}$	AT 5．1150 B5／10	RMS（average）output
	$\left\|\begin{array}{c} 5,10,20,50, \\ 100,150 \end{array}\right\|$	ст	$\begin{array}{\|c\|} \hline \text { powered } \\ \text { Lower } \\ \text { powerd } \\ +20 \ldots . .30 \\ V_{\text {oc }} \end{array}$	0．05．．．0．06	$1.5{ }^{\text {® }}$	－20．．．60	－16	\bullet		4－20 mA ${ }_{\text {oc }}$	\square	158	AT $5.150 \mathrm{B420L}$	RMS（average）output
	$\begin{array}{\|c\|} \hline 10,20,50, \\ 100,150,200 \\ \hline \end{array}$	CT	$\begin{gathered} \text { sof } \\ \text { powered } \\ \text { powe } \end{gathered}$	0．05．．．0．06	1	－20．．．50	$\begin{array}{\|l\|l\|} \hline 21.7 \mathrm{x} \\ 21.7 \end{array}$	\bullet	－	$0-10 V_{\text {oc }}$	\triangle	159	AK $50.200 \mathrm{B10}$	RMS（average）output
	$\begin{array}{\|c\|} \hline 2,5,10,20, \\ 50,100, \\ 150,200 \\ \hline \end{array}$	Ст	$\begin{gathered} \text { Loop } \\ \text { powered } \\ +24 V_{\text {oc }} \end{gathered}$	0．02．．．0．1	1	－20．．．50	$\begin{aligned} & 21.7 \mathrm{x} \\ & 21.7 \end{aligned}$	－	0	4－20 mA ${ }_{\text {co }}$	\triangle	159	AK $5.200 \mathrm{B420L}$	RMS（average）output
	$\begin{array}{\|c\|} \hline 10,20,50, \\ 100,150,200 \end{array}$	Ст	Self powered	0．05．．．0．06	1	－20．．．50	$\bigcirc 19$		\bigcirc	$0-10 \mathrm{~V}_{\text {oc }}$	\wedge	161	AK 50． 200 C 10	RMS（average）output
	$\begin{array}{\|c\|} \hline 2,5,10,20, \\ 50,10, \\ 150,200 \\ \hline \end{array}$	CT	$\begin{aligned} & \text { poweor } \\ & \text { Loored } \\ & \text { powered } \\ & +24 \mathrm{~V}_{\text {oc }} \end{aligned}$	0．02．．．0．1	1	－20．．．50	$\bigcirc 19$		－	4－20 mA ${ }_{\text {oc }}$	\triangle	161	AK 5.200 C 420 L	RMS（average）output
	10，25，50， 75,100, 150,200 300， 400	ime	$+24 \mathrm{~V}_{\text {oc }}$	0．03．．．2	13）	－20．．．60	－ 18.5	\bullet	－	0－5／10 Voc	\triangle	162	AP 50.400 B5／10	
	$\begin{aligned} & 10,25,50, \\ & 75,100, \\ & 150,200, \\ & 300,400 \\ & \hline \end{aligned}$	PRIME		0．03．．．2	${ }^{18}$	－20．．．60	－ 18.5	\bullet	－	4－20 mioc	\triangle	163	AP $50.400 \mathrm{B42OL}$	RMS output（average） Switch selectable measuring ranges
$\begin{gathered} \text { AC True } \\ \text { RMS } \end{gathered}$	$\begin{gathered} \hline 2,5,10,20, \\ 50,100, \\ 150,200 \\ \hline \end{gathered}$	CT	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|} \hline \text { Loopered } \\ \text { powered } \\ +24 \mathrm{~V}_{\mathrm{oc}} \end{array}$	0．01．．．0．4	1	－20．．．50	$\begin{array}{\|c} 21.7 \mathrm{x} \\ 21.7 \end{array}$	－	0	4－20 mA ${ }_{\text {oc }}$	\triangle	160	AKR $5.200 \mathrm{B420L}$	True RMS output Switch selectable witas measuring ranges
	$\begin{array}{\|c\|} \hline 2,5,10,20, \\ 50,100, \\ 150,200 \end{array}$	Ст	$\begin{array}{\|c\|} \hline \text { Loop } \\ \text { powered } \\ +24 \mathrm{~V}_{\mathrm{oc}} \end{array}$	0．01．．．0．4	1	－20．．＋50	－ 19		0	4－20 mA ${ }_{\text {oc }}$	\triangle	161	AKR $5.200 \mathrm{C420L}$	True RMS output Switch selectable measuring ranges
	$\begin{aligned} & 10,25,50, \\ & 75,100, \\ & 150,200, \\ & 300,400 \end{aligned}$	ME	$+24 \mathrm{~V}_{\text {oc }}$	0．03．．．6	${ }^{18}$	－20．．．60	－ 18.5	\bullet	－	$0-5 / 10 \mathrm{Voc}$	\triangle	162	APR 50.400 B5／10	
	$\begin{aligned} & \begin{array}{l} 0,25,50, \\ 5,50,100 \\ 150,20, \\ 300,400 \end{array} \\ & 300, \end{aligned}$	PRIME	$\begin{array}{\|c} \text { Loop } \\ \text { powered } \\ +12.24 \\ v_{0 c} \\ \hline \end{array}$	0．03．．．6	18）	－20．．．60	－ 18.5	\bullet	－${ }^{4}$	4－20 mA ${ }_{\text {oc }}$	\triangle	163	APR $50.400 \mathrm{B420}$	True RMS output Switch selectable measuring ranges
	375，500， 750	Ст	$\begin{array}{\|c\|c\|} \hline \text { Loop } \\ \text { powered } \\ \text { pow } \\ \hline+24 \mathrm{~V}_{\text {oc }} \\ \hline \end{array}$	0．01．．．0．4	1	－20．．＋50	${ }^{\circ} 76$			4－20 mA ${ }_{\text {oc }}$		164	AKR 750 C 420 LJ	True RMS output Switch selectable measuring ranges
	$\begin{gathered} 1000,1333, \\ 2000 \end{gathered}$	CT		0．01．．．0．4	1	－20．．．50	¢ 76			4－20 mA ${ }_{\text {co }}$		164	AKR 2000 C420LJ	$\begin{aligned} & \text { True RMS output } \\ & \text { Switch solectable } \\ & \text { measuring ranges } \end{aligned}$

$1_{P N}=5 \mathrm{~A} . . .20000 \mathrm{~A}$

PN	$=5$			A									DRS／R	Open－100p
	l_{Pw} A		$\begin{aligned} & u_{c} \\ & v \end{aligned}$	BW kHz	$\begin{gathered} x @ 1 \\ \begin{array}{l} I_{\mathrm{PN}} \\ T_{A}=25 \\ { }^{\circ} \mathrm{C} \mathrm{C} \end{array} \\ \hline \% \\ \hline \end{gathered}$	T_{A}				$\begin{aligned} & \text { 言 } \\ & \text { 言 } \end{aligned}$			Type	Features
$\begin{gathered} \text { DC \& } \\ \text { AC True } \\ \text { RMS } \end{gathered}$	$\begin{gathered} 100,200, \\ 300,400, \\ 500,600, \\ 1000 \\ \hline \end{gathered}$	o／L	$\stackrel{+20.50}{V_{\text {oc }}}$	$\begin{gathered} \text { DC \& } \\ 0.02 \ldots . .6 \end{gathered}$	12）	－40．．．70	－ 32				\triangle	165	DHR 100.1000 C5／10	UL from 100 to 400 A True RMS output
	$\begin{array}{\|c} 1000 \\ \hline 100,200, \\ 300,400, \\ 500,600, \\ 1000 \\ \hline \end{array}$	O／	$\stackrel{+20.50}{V_{\text {oc }}}$	$\begin{gathered} \text { DC \& } \\ 0.02 . .6 \end{gathered}$	${ }^{18}$	$-40 . . .+70$	－ 32			$\begin{aligned} & \begin{array}{l} 4-20 \\ \mathrm{AAOD} \end{array} \end{aligned}$	\triangle	165	DHR 100.1000 C420	UL from 100 to 400 A True RMS output
	$\begin{aligned} & 500,800, \\ & 1000,1500, \end{aligned}$	o／	$\stackrel{+20.50}{V_{D C}}$	$\begin{gathered} \text { DC \& } \\ 0.02 \ldots . .6 \end{gathered}$	1）	－40．．．＋70	104×40	\bullet		$\begin{array}{\|c} 0-5 / 10 \\ V_{\text {oc }} \end{array}$		166	AHR 500． 2000 B5／10	True RMS output
	$\begin{gathered} \text { 500, } 800, \\ 1000,150, \\ 2000, \end{gathered}$	o／L	$\stackrel{+20.50}{V_{\text {oc }}}$	$\begin{gathered} \text { DC \& } \\ 0.02 . .6 \end{gathered}$	${ }^{18}$	－40．．．＋70	104×40	\bullet				166	AHR 500.2000 B420	True RMS output
		O／L	＋／15 Voc	$\begin{gathered} \text { DC \& } \\ 0.015 \ldots 3 \\ \hline \end{gathered}$	${ }^{14}$	－25．．．＋85	162×42			0－10 $\mathrm{Voc}_{\text {oc }}$		71	HAZ 4000.20000 －SRU	True RMS output
	$\begin{aligned} & 4 k, 6 \mathrm{k}, \\ & 40 \mathrm{k}, 12 \mathrm{k}, \\ & 14 \mathrm{k}, 20 \mathrm{k} \\ & \hline \end{aligned}$	O／L	＋／15 Voc	$\begin{array}{\|c} \text { DC \& } \\ 0.015 \ldots \\ \hline \end{array}$	19）	－25．．．＋85	162×42			$\begin{gathered} 0-20 \\ \mathrm{~mA} \mathrm{~A}_{\mathrm{oc}} \end{gathered}$		71	HAZ 4000． 20000 －SRI	True RMS output
	4k，6k， 10k，12k，	o／L	＋／15 Voc	$\begin{gathered} \text { DC \& } \\ 0.015 . . .3 \end{gathered}$	1^{18}	－25．．．＋85	162×42			$\begin{aligned} & { }^{4-20} \\ & \hline A_{00} \end{aligned}$		71	$\begin{aligned} & \text { HAZ 4000.. } 20000 \\ & - \text {-SRI/SP1 } \end{aligned}$	True RMS output
DC	$\begin{array}{r} \begin{array}{c} 50,75, \\ 100,150, \\ 200,225, \\ 300,400 \end{array}, \end{array}$	O／L	$\underset{\substack{+20.45 \\ V_{\text {oc }}}}{ }$	DC	2	－20．．．＋50	$\begin{gathered} 21.7 \times 7 \times \\ 21.7 \end{gathered}$	－	－	$\begin{gathered} 0-5 / 10 \\ V_{\text {Do }} \end{gathered}$		167	DK 100．400 B5／10	Magnitude only－Not the direction Svith sellectable measusurng ranges Unipolar voltage output
		O／L	$\underset{\substack{+20.45 \\ V_{\text {oc }}}}{ }$	DC	2	－20．．．＋50	$\begin{gathered} 21.7 \times 7 \\ 21.7 \end{gathered}$	－	－	$\begin{aligned} & { }^{4-20} \\ & \mathrm{AA} \mathrm{AO}^{0} \end{aligned}$		167	DK 100． 400 B420	Magnitude only - Not the direction－ 4 mA at $\mathrm{I} p=0$ Switch selectable measuring ranges Unipolar current output
	$\begin{gathered} 50,75, \\ 100,150, \\ 200,225, \\ 300,400 \\ \hline \end{gathered}$	O／L	$\stackrel{+20.45}{V_{\text {oc }}}$	DC	2	－20．．．＋50	$\begin{gathered} 21.7 \\ 21.7 \end{gathered}$	－	－	$\begin{aligned} & \mathrm{O}-20 \\ & \mathrm{AADO} \end{aligned}$		167	DK $100.400 \mathrm{BO20}$	
$\begin{aligned} & \text { DC } \\ & \text { Bipolar } \end{aligned}$	$\begin{gathered} 50,75, \\ 100,150, \\ 200,225, \\ 300,400 \end{gathered}$	O／L	$\begin{gathered} +20.45 \\ V_{\mathrm{Dc}} \end{gathered}$	DC	${ }^{10}$	－20．．．＋50	$\begin{array}{\|c} 21.7 \mathrm{x} \\ 21.7 \end{array}$	－	－	$\begin{aligned} & 4-20 \\ & m A_{\mathrm{oc}} \end{aligned}$		167	DK 100．400 B420 B	DC bipolar measurement （magnitude and direction） 12 mA at $\mathrm{pp}=0$
	$\begin{gathered} 5,10,20, \\ 50,75,100 \end{gathered}$	O／L	$\begin{gathered} +20.45 \\ V_{o c} \end{gathered}$	DC	1	－20．．．＋50	－ 19.1		0	$\begin{aligned} & 4-20 \\ & \text { mA }_{0 \mathrm{DC}} \end{aligned}$		168	DK 20.100 C 420 B	DC bipolar measurement （magnitude and direction） 12 mA at $\mathrm{lp}=0$
	$\begin{gathered} \text { 500, 800, } \\ 1000,1500, \\ 2000 \end{gathered}$	O／L	$\begin{aligned} & \text { Loop } \\ & \text { Lower } \\ & \text { powed }+20.30 \end{aligned}$	DC	13）	$-10 . .+70$	104×40	－		4－20 mA		169	DH 500.2000 B420LB	DC bipolar measurement （magnitude and direction） $12 \mathrm{mAatl}=0$

$\mathrm{V}_{\mathrm{PN}}=10 \mathrm{~V} . .2500 \mathrm{~V}$
DRS / REU Closes-los

50	75	Insulating digital	$\pm 15 . . .24$	50 mA	DC-14 (-3dB)	0.5	$-40 . .+85$		78	DVL 50	2×M5	$\begin{gathered} 3 \times \mathrm{M5}+ \\ \text { Faston } \end{gathered}$
125	188	Insulating digital technology	$\pm 15 . . .24$	50 mA	DC-14 (-3dB)	0.5	-40...85		78	DVL 125	2xM5	$\begin{gathered} 3 \times \mathrm{MS}^{2}+ \\ \text { Faston } \end{gathered}$
150	225	Insulating digital	$\pm 15 . . .24$	50 mA	DC-14 (-3dB)	0.5	$-40 . .+85$		78	DVL 150	$2 \times \mathrm{M}$	$\begin{gathered} 3 \times \mathrm{MF}^{2+} \\ \text { Faston } \end{gathered}$
250	375	Insulating digital technology	$\pm 15 . . .24$	50 mA	DC-14 (-3dB)	0.5	-40...85		78	DVL 250	$2 \times \mathrm{M} 5$	$\begin{gathered} 3 \times \mathrm{M} 5+ \\ \text { Faston } \end{gathered}$
200	300	c/	$\pm 12 . .15$	25 mA	Note c)	0.9	-25...70	-	79	LV 25-200	Faston	Faston
400	600	c/	$\pm 12 \ldots 15$	25 mA	Note c)	0.9	$-25 . .+70$	-	79	LV 25-400	Faston	Faston
140	200	Fluxgate "C"	± 15	$10 \mathrm{~V} / 200 \mathrm{~V}$	DC-300 (-1dB)	$0.2 @ \mathrm{Vp}$	$-40 . .+85$		80	CV 3-200	2×M5	$4 \times \mathrm{M5}$
350	500	Fuxgate "C"	± 15	$10 \mathrm{~V} / 500 \mathrm{~V}$	DC-300 (-1dB)	0.2 ® Vp	$-40 . .+85$		80	CV 3-500	$2 \times \mathrm{M} 5$	$4 \times \mathrm{M5}$

V_{PN}	5	V ...			DRS /	-				Closed-loop		Fluxate
$\pm V_{P N}$	$\pm V_{p}$	$\begin{aligned} & \text { 잉 } \\ & \text { 응 } \end{aligned}$	u_{c}	$\begin{aligned} & \mathrm{V}_{\mathrm{out}} \\ & \mathrm{o}_{\text {out }} \end{aligned}$	BW	$\begin{gathered} x_{\mathrm{C}} \\ T_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$		$\stackrel{3}{2}$	$\underset{\mathrm{O}}{\mathrm{O}}$	Type		등 릉
		$\stackrel{\text { ¢ }}{ }$		@ V_{pw}		$\underset{\substack{\% \\ \text { with max } \\ \text { offset } \\ \text { taken }}}{ }$ taken	${ }^{\circ} \mathrm{C}$		$\frac{.0}{0}$			
500	750	Insulating digital technology	$\pm 15 . . .24$	50 mA	DC-14 (-3dB)	0.5	$-40 . .+85$		78	DVL 500	$2 \times \mathrm{M} 5$	$\begin{gathered} \substack{\times \times \times 5+\\ \text { Faston }} \end{gathered}$
750	1125	Insulating digital	$\pm 15 . . .24$	50 mA	DC-14 (-3dB)	0.5	$-40 . .+85$		78	DVL 750	$2 \times$	$\begin{gathered} 3 \times M 5+ \\ \text { Faston } \end{gathered}$
1000	1500	Insulating digital technology	$\pm 15 . . .24$	50 mA	DC-14 (-3dB)	0.5	-40...185		78	DVL 1000	$2 \times \mathrm{M}$	$3 \times \mathrm{M} 5+$ Faston
1000	1500	Insulating digital technology	$\pm 15 . . .24$	50 mA	DC-12 (3dB)	0.3	-40...185		81	DV 1000	Cable	Cable
1200	1800	Insulating digital technology	$\pm 15 . .24$	50 mA	DC-12 (3dB)	${ }^{0.3}$	$-40 . .+85$		82	DV 1200/SP2	Cable	M5 + Faston
1500	2250	Insuluting digital technology	$\pm 15 . . .24$	50 mA	DC-14 (-3dB)	0.5	$-40 . .185$		78	DVL 1500	$2 \times \mathrm{M5}$	$\begin{gathered} 3 \times M 5+ \\ \text { Faston } \end{gathered}$
1500	2250	Insuluting digital technologial	$\pm 15 . . .24$	50 mA	DC-12 (3dB)	0.3	-40...185		82	DV 1500	Cable	M5 + Faston
2000	3000	Insuluting digital technologial	$\pm 15 . . .24$	50 mA	DC-14 (-3dB)	0.5	-40... 85		78	DVL 2000	$2 \times \mathrm{M5}$	$\begin{aligned} & 3 \times M 5+ \\ & \text { Faston } \end{aligned}$
2000	3000	Insulating digital technology	$\pm 15 . . .24$	50 mA	DC-12 (3dB)	0.3	$-40 . .+85$		81	DV 2000	Cable	Cab
2000	3000	Insuluting digital technol ogy	$\pm 15 . . .24$	50 mA	DC-12 (3dB)	0.3	-40...185		82	DV 2000/SP1	Cable	M5 + Faston
2000	3000	Insulating digital echnology	$\pm 15 . . .24$	50 mA	DC-12 (3dB)	0.3	$-40 . .+85$		${ }^{83}$	DV 2000/SP2	M5	M5
2800	4200	Insulating digital technology	$\pm 15 . . .24$	50 mA	DC-12 (308)	0.3	-40...185		84	DV 2800/SP4	M5	M5
3000	4500	Insulating digital	$\pm 15 . . .24$	50 m	DC-12 (3dB)	0.35	$-40 . .+85$		84	DV 3000/SP1	м5	м5
4200	6000	Insulating digital technology	$\pm 15 \ldots 24$	50 mA	DC-12 (3dB)	${ }^{0.3}$	$-40 . .+85$		${ }^{81}$	DV 4200/SP3	Cable	Cable
4200	6000	Insulating digital technologay	$\pm 15 \ldots . .24$	50 mA	DC-12 (3dB)	${ }^{0.3}$	$-40 . .+85$		84	DV 4200/SP4	м5	M5
600	900	C/L	$\pm 12 . .15$	25 mA	Note c)	0.9	$-25 . . .+70$		79	LV 25-600	Faston	Faston
800	1200	c/L	$\pm 12 . .15$	25 mA	Note c)	0.9	$-25 . . .+70$		79	LV 25-800	Faston	Faston
1000	1500	C/L	$\pm 12 . .15$	25 mA	Note c)	0.9	$-25 . .+70$		79	LV 25-1000	Faston	Faston
1200	1800	C/L	$\pm 12 \ldots 15$	25 mA	Note c)	0.9	$-25 . . .+70$	-	79	LV 25-1200	Faston	Faston
2500	3750	c/L	± 15	50 mA	Note c)	0.9	0...770		${ }^{85}$	LV 100-2500	$2 \times$ M5	$\begin{gathered} 3 \times \mathrm{M} 5+ \\ \text { Faston } \end{gathered}$
3000	4500	C/L	± 15	50 mA	Note c)	0.9	0...770		85	LV 100-3000	$2 \times \mathrm{M5}$	$\begin{aligned} & \begin{array}{l} 3 \times \text { M5 } \\ \text { Fasto } \end{array} \end{aligned}$
3500	4500	C/L	± 15	50 mA	Note c)	0.9	0...770		85	LV 100-3500	$2 \times \mathrm{M5}$	$\begin{aligned} & 3 \times M 5++ \\ & \text { Faston } \end{aligned}$
4000	6000	C/L	± 15	50 mA	Note c)	0.9	0...770		85	LV 100-4000	$2 \times \mathrm{M5}$	$\begin{aligned} & 3 \times 45++ \\ & \text { Faston } \end{aligned}$
700	1000	Fluxgate "C"	± 15	$10 \mathrm{~V} / 1000 \mathrm{~V}$	$\begin{gathered} \mathrm{DC}-500 \\ \left(-1 \mathrm{~dB} @ 50 \% V_{\text {PN }}\right) \end{gathered}$	0.2 © V_{P}	-40...85		80	CV 3-1000	$2 \times \mathrm{M5}$	$4 \times \mathrm{M} 5$
840	1200	Fluxgate "C"	± 15	$10 \mathrm{~V} / 1200 \mathrm{~V}$	$\begin{gathered} \mathrm{DC}-800 \\ \left(-1 \mathrm{AB} @ 40 \% V_{\text {PN }}\right) \\ \hline \end{gathered}$	0.2 ® V_{p}	-40... 85		80	CV 3-1200	$2 \times \mathrm{M5}$	$4 \times \mathrm{M5}$
1000	1500	Fluxgate "C"	± 15	$10 \mathrm{~V} / 1500 \mathrm{~V}$	$\begin{gathered} \mathrm{DC}-800 \\ \left(-1 \mathrm{~dB} @ 33 \% V_{\text {PN }}\right) \\ \hline \end{gathered}$	0.2 © V ${ }^{\text {p }}$	-40... +85		80	CV 3-1500	$2 \times \mathrm{M5}$	$4 \times \mathrm{M5}$
1400	2000	Fluxgate "C"	± 15	$10 \mathrm{~V} / 2000 \mathrm{~V}$	$\begin{gathered} \mathrm{DC}-300 \\ \left(-\mathrm{ADB} \text { @ } 25 \% V_{\text {PN }}\right) \\ \hline \end{gathered}$	0.2 © $V_{\text {r }}$	-40... 85		80	CV 3-2000	$2 \times \mathrm{M5}$	$4 \times \mathrm{M} 5$

(79)

Notes:

$\frac{\text { Notes: }}{\text { c) See response time in individual data sheet }}$
d) The primary and secondary connections of this transducer are done on PCB
e) Mechanical Mounting
o) Recognition pending

Dedicated data sheets are the only recognized reference documents for the given performances and data - Data sheets: www.lem.com
Comprehensive Monitoring SolutionCut Installation CostsEasy Commissioning

Applications :

- Establish the breakdown of energy use (where does it all go?)
- Allocate energy wastes to users
- Determine efficiency of equipment
- Audit before \& after energy use for retrofit projects
- Manage the load profile (peak demand)
- Maintenance and Entreprise Asset Management
* an additional intrinsic safety barrier module is needed

Wi-LEM COMPONENTS

Energy Meter Node (EMN):
Single or three phase energy meter with embedded wireless data transmission module

Measurement ranges:
Current from 20 to 2000 A
Voltage from 90 to 500 VAC
Measurement values:

	Interval Based Values (5 to 30 minutes Configurable Reading Intervals)											Cummulated				
	L1				L2			L3			sum	L1	L2	L3		sum
	Avg	Min		Max A	Avg	Min	Max	Avg	Min	Max						
Current (A)																
Voltage (V)																
Active Energy (kWh)																
Reactive Energy (kVarh)																
Apparent Energy (kVA)																
Frequency																

Wi-Pulse:

A transducer that counts and transmits pulses coming from meters like water or gas

Wi-Zone:

Temperature and Humidity transducer

Wi-Temp:

Two inputs thermistors based temperature sensors

Mesh Gate:

A gateway managing the mesh network (up to 200 Nodes). It provides data through serial interface to a PC or RTU

Mesh Node:

Repeater linking various Nodes. They enable wireless communication throughout a large installation
$I_{P N}=0.4 \mathrm{~A} \ldots 400 \mathrm{~A}$
TTR - On-Board

$\mathrm{I}_{\text {PN }}$	I_{p}		$u_{\text {c }}$	$\begin{gathered} V_{\mathrm{out}} \\ I_{\mathrm{out}} \end{gathered}$	BW			T_{A}	Connection				$\begin{aligned} & \overrightarrow{2} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{y}{0} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Type	Features
									Primary		Secondary					
A	A		v	${\text { ® }{ }_{\text {PN }} \text { }}$	kHz	\%	\%	${ }^{\circ} \mathrm{C}$	\%	$\frac{8}{8}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\frac{\bar{m}}{\bar{\circ}}$				
0.4	± 0.85	c/L	± 15	30 mA	DC-150 (-1dB)	0.5	0.8	$-40 . .+85$	\bullet		-		\bullet	1	LA 25-NP/SP38	
1.5	± 2.2	c/L	± 15	24 mA	DC-150 (-1dB)	0.5	0.9	-40...+85	-		-		-	1	LA 25-NP/SP34	
2	± 2.5	C/	± 15	40 mA	DC-150 (-1dB)	0.5	0.7	$-40 . .+85$	\bullet		-		\bullet	1	LA 25-NP/SP39	
5	± 7	C/	± 15	25 mA	DC-150 (-1dB)	0.5	0.9	-40...+85	-		-		\bullet	22	LA 25-NP/SP25	
6	± 9	c/L	± 15	24 mA	DC-150 (-1dB)	0.5	0.9	-40...+85	-		-		\bullet	22	LA 25-NP/SP25	
8	± 12	c/	± 15	24 mA	DC-150 (-1dB)	0.5	0.9	-40...+85	-		-		-	22	LA 25-NP/SP25	
12	± 18	/L	± 15	24 mA	DC-150 (-dB)	0.5	0.9	-40...+85	-		-		-	22	LA 25-NP/SP25	
25	± 36	c/L	± 15	25 mA	DC-150 (-1dB)	0.5	0.9	$-40 . .+85$	-		-		-	22	LA 25-NP/SP25	
100	± 200	c/L	$\pm 12 . .15$	$\begin{aligned} & 100 \\ & \text { mA } \end{aligned}$	DC-100 (-3dB)	0.4	0.6	$-40 . .+85$		$\begin{aligned} & 0.5 .5 \\ & \mathrm{~mm} \end{aligned}$		Molex	\bullet	44	LF 205-S/SP5	Molex Minifit 5566
130	$\stackrel{ \pm}{ \pm}$		± 24	65 mA	DC-50 (-3dB)	0.5	1.45	$-40 . .+85$		Aperture		Molex	-	108	$\begin{aligned} & \text { LAC 300-S/ } \\ & \text { SP5 } \end{aligned}$	Molex 70543-0003
200	± 400	c/L	± 24	50 mA	DC-50 (-3dB)	0.5	1	$-40 . .+85$		Aperture		Cable	\bullet	110	$\begin{aligned} & \text { LAC 300-S/ } \\ & \text { SP8 } \end{aligned}$	
200	± 42	c/L	$\pm 12 . .15$	$\begin{aligned} & 100 \\ & \text { mA } \end{aligned}$	DC-100 (-3dB)	0.4	0.5	$-40 . .+85$		$\begin{gathered} \sigma_{15.5} \\ \mathrm{~mm} \end{gathered}$		Molex	-	44	LF 205-S/SP1	Molex Minifit 5566
200	± 500	c/	± 24	40 mA	DC-100 (-1dB)	0.7	1	$-30 . .+70$		Split core Aperture $67 \times 67 \mathrm{~mm}$		AMP		111	$\underset{\text { SP3 }}{\substack{\text { LA 200-SD/ }}}$	AMP CPC 11/4
200	± 70	c/L	± 15	$\begin{aligned} & 100 \\ & \text { mA } \end{aligned}$	DC-50 (-3dB)	0.5	1.25	$-40 . .+85$		Aperture $13 \times 30 \mathrm{~mm}$		Mol	-	108	$\begin{gathered} \text { LAC 300-S/ } \\ \text { SP1 } \end{gathered}$	Molex 70543-0003
300	± 500	ch	$\pm 12 \ldots 20$	$\begin{aligned} & 150 \\ & \mathrm{~mA} \end{aligned}$	DC-100 (-3dB)	0.3	0.47	$-40 . .+85$		$\varnothing 20 \mathrm{~mm}$		Molex	\bullet	55	LF 305-S/SP10	Molex Minifit 5566
300	± 64	c/L	± 15	$\begin{aligned} & 100 \\ & \mathrm{~mA} \end{aligned}$	DC-50 (-3dB)	0.4	1	-40...+85		Aperture $13 \times 30 \mathrm{~mm}$		Molex	-	108	$\begin{gathered} \text { LAC 300-S/ } \\ \mathrm{SP2} 2 \end{gathered}$	Molex 70543-0003
300	± 910	c/	± 24	60 mA	DC-50 (-3dB)	0.5	1.4	-40...+85		$\underset{\text { Aperture }}{1}$ 13×30 mm		Molex	\bullet	108	$\begin{aligned} & \text { LAC } 300-\mathrm{S} / \\ & \text { SP4 } \end{aligned}$	Molex 70543-0003
400	± 600	C/	± 15	80 mA	DC-50 (-3dB)	0.4	1.1	$-40 . .+85$		$\underset{\substack{\text { Aperture } \\ 13 \times 30 \\ \hline}}{ }$		Molex	-	108	$\begin{gathered} \text { LAC } 300-\mathrm{S} / \\ \mathrm{SP} 3 \end{gathered}$	Molex 70543-0003

$I_{P N}=400 \mathrm{~A} \ldots 500 \mathrm{~A}$

	I_{p}		u_{c}	$\begin{aligned} & V_{\mathrm{out}} \\ & \mathrm{I}_{\mathrm{out}} \\ & \text { @ } I_{\mathrm{PN}} \end{aligned}$	BW			T_{A}	Connection				$\left\lvert\, \begin{aligned} & 1 \\ & \\ & 0 \\ & \\ & \hline \end{aligned}\right.$	0 0 0 0 0 O O 0	Type	Features
$I_{\text {PN }}$									Primary		Secondary					
A	A				kHz	\%	\%	${ }^{\circ} \mathrm{C}$	\%		$\begin{array}{\|c\|} \hline 0 \\ 0 \end{array}$					
400	± 650	c/L	± 15	100 mA	DC-50 (-3dB)	0.4	1	-40...+85		Aperture $13 \times 30 \mathrm{~mm}$		Molex	-	108	LAC 300-S	Molex 70543-0003
400	± 100	C/L	± 15	133 mA	DC-50 (-3dB)	0.4	1.2	$-40 . .+75$		Aperture $13 \times 30 \mathrm{~mm}$		Cable	-	109	$\underset{\text { SP7 }}{\text { LAC } 300-S /}$	
350	± 1200	C/L	$\pm 15 . . .24$	175 mA	DC-100 (-1dB)	0.3	0.5	$-40 . .+85$		$\varnothing 27.5 \mathrm{~mm}$		$4 \times \mathrm{M} 5$		112	LTC 350-S	Screen
350	± 1200	C/L	$\pm 15 \ldots 24$	175 mA	DC-100 (-1dB)	0.3	0.5	$-40 . .+85$		$\varnothing 27.5 \mathrm{~mm}$		$\begin{gathered} 4 \times \mathrm{M} 5 \\ + \text { Faston } \end{gathered}$		113	LTC 350-SF	With feet Screen
350	± 1200		$\pm 15 . . .24$	175 mA	DC-100 (-1dB)	0.3	0.5	-40...+85		Busbar		$\begin{gathered} 4 \times \mathrm{M} 5 \\ + \text { Faston } \end{gathered}$		114	LTC 350-T	Screen
350	± 120	C/	$\pm 15 \ldots 24$	175 mA	DC-100 (-1dB)	0.3	0.5	$-40 .+85$		Busbar		$\begin{gathered} 4 \times \mathrm{M5} \\ + \text { + aston } \end{gathered}$		115	LTC 350-TF	With feet Screen
500	± 700	c/	± 24	100 mA	DC-100 (-1dB)	0.4	1	-30...+70		$\begin{array}{\|l\|l\|} \hline \text { Split core } \\ \text { Aperture } \\ 67 \times 67 \mathrm{~mm} \end{array}$		AMP		111	$\begin{gathered} \text { LA 500-SD/ } \\ \text { SP2 } \end{gathered}$	AMP CPC 11/4
500	± 1000	C/L	± 24	100 mA	DC-100 (-1dB)	0.3	0.6	-40...+85		$\begin{gathered} \theta_{30.2} \\ \mathrm{~mm} \end{gathered}$		Cable	-	116	$\begin{gathered} \hline \text { LF 505-S/ } \\ \text { SP23 } \end{gathered}$	Screen
500	± 1200	C/	$\pm 15 . . .24$	125 mA	DC-100 (-1dB)	0.4	0.6	$-40 . .+85$		$\varnothing 27.5 \mathrm{~mm}$		$\begin{aligned} & 4 \times \mathrm{M5} \\ & + \text { Faston } \\ & \hline \end{aligned}$		112	LTC 500-S	Screen
500	± 1200	C/L	$\pm 15 . .24$	125 mA	DC-100 (-1dB)	0.4	0.6	$-40 . .+85$		${ }^{\circ} 27.5 \mathrm{~mm}$		$\begin{gathered} \hline 4 \times \mathrm{M} 5 \\ + \text { Faston } \\ \hline \end{gathered}$		113	LTC 500-SF	With feet Screen
500	± 1200		$\pm 15 . . .24$	125 mA	DC-100 (-1dB)	0.4	0.6	-40...+85		Busbar		$\begin{gathered} 4 \times \mathrm{M5} \\ + \text { Faston } \\ \hline \end{gathered}$		114	LTC 500-T	Screen
500	± 1200	C/L	$\pm 15 . . .24$	125 mA	DC-100 (-1dB)	0.4	0.6	-40...+85		Busbar		$\begin{gathered} \hline 4 \times \mathrm{M} 5 \\ + \text { Faston } \\ \hline \end{gathered}$		115	LTC 500-TF	With feet Screen
500	± 1500	C/	$\pm 15 . . .24$	100 mA	DC-100 (-1dB)	0.3	0.7	-40...+85		$\varnothing 42 \mathrm{~mm}$		$\begin{gathered} \hline 4 \times \mathrm{M} 5 \\ + \text { Faston } \\ \hline \end{gathered}$	-	117	LTC 600-S	Screen
500	± 1500	C/L	$\pm 15 . . .24$	100 mA	DC-100 (-1dB)	0.3	0.7	-40...+85		$\varnothing 42 \mathrm{~mm}$		$\begin{gathered} \hline 4 \times \mathrm{M} 5 \\ + \text { Faston } \\ \hline \end{gathered}$	-	118	LTC 600-SF	With feet Screen
500	± 1500	C/L	$\pm 15 . . .24$	100 mA	DC-100 (-1dB)	0.3	0.7	-40...+85		$\varnothing 42 \mathrm{~mm}$		$\begin{aligned} & 4 \times \mathrm{M5} 5 \\ & + \text { Faston } \end{aligned}$	-	119	LTC 600-SFC	$\begin{array}{\|l\|l\|} \hline \text { With feet + } \\ \text { clampe } \\ \text { Screen } \end{array}$
500	± 1500	/	$\pm 15 . . .24$	100 mA	DC-100 (-1dB)	0.3	0.7	-40...+85		Busbar		$\begin{gathered} \hline 4 \times \mathrm{M} 5 \\ + \text { Faston } \\ \hline \end{gathered}$	-	120	LTC 600-T	Screen
500	± 1500	c	$\pm 15 . . .24$	100 mA	DC-100 (-1dB)	${ }^{0.3}$	0.7	-40...+85		Busbar		$\begin{gathered} \hline 4 \times \mathrm{M} 5 \\ + \text { Faston } \\ \hline \end{gathered}$	-	121	LTC 600-TF	With feet Screen

$I_{P N}=1000 \mathrm{~A} . . .2000 \mathrm{~A}$
TT

1000	± 1100	0/L	± 15	10 V	$\left\lvert\, \begin{gathered} \mathrm{DC}-10 \\ (-3 \mathrm{CB})^{\prime \prime} \end{gathered}\right.$	1.8	2.3	$-40 . .+85$	$\bigcirc 40 \mathrm{~mm}$	Screws		122	HTC 1000-S/SP4	
1000	± 1500	C/L	± 24	200 mA	$\underset{\substack{\text { DC-150 } \\(-10 B)}}{\substack{\text { OB }}}$	0.3	0.5	$-40 . .+85$	$\underset{\mathrm{mm}}{\varnothing_{3} .5}$	$4 \times \mathrm{M} 4$	-	123	LF 1005-S/SP14	Screen
1000	± 2400	C/L	$\pm 15 . .24$	200 mA	$\left\lvert\, \begin{gathered} \mathrm{DC-100} \\ (-1 \mathrm{CDB}) \end{gathered}\right.$	0.3	0.4	$-40 . .+85$	$\bigcirc 42 \mathrm{~mm}$	$\begin{gathered} 4 \times \mathrm{M5} 5 \\ \text { + Faston } \end{gathered}$	\bullet	117	LTC 1000-S	Screen
1000	± 2400	c/L	$\pm 15 . . .24$	250 mA	$\begin{gathered} \text { DC-100 } \\ (-1 d B) \end{gathered}$	${ }^{0.3}$	0.4	$-40 . .185$	$\varnothing^{\varnothing} 42 \mathrm{~mm}$	$\begin{gathered} 4 \times \mathrm{M5} \\ + \text { Faston } \end{gathered}$	-	124	LTC 1000-S/SP1	Screen
1000	± 3000	C/L	$\pm 15 . .24$	250 mA	$\underset{(-1 \mathrm{~dB})}{\mathrm{DC}-100}$	${ }^{0.3}$	0.4	$-40 . .+85$	$\varnothing 42 \mathrm{~mm}$	4x Faston	-	125	LTC 1000-S/SP25	Screen
1000	± 2400	c/	$\pm 15 . . .24$	200 mA	$\begin{gathered} \text { DC-100 } \\ (-1 d B) \end{gathered}$	0.3	0.4	-40...85	$\varnothing 42 \mathrm{~mm}$	$\begin{gathered} 4 \times \mathrm{M5} \\ + \text { Faston } \end{gathered}$	-	118	LTC 1000-SF	With feet Screen
1000	± 2400	C/L	$\pm 15 . .24$	200 mA	$\begin{array}{\|c\|c\|c\|} \hline \text { DC-100 } \\ (-1 d B) \end{array}$	0.3	0.4	-40...185	$\varnothing 42 \mathrm{~mm}$	$\begin{gathered} 4 \times \mathrm{M4} \\ + \text { Faston } \end{gathered}$	-	126	LTC 1000-SF/SP24	With long feet Footprint compatible with former LT 1000-SI series Screen
1000	± 2400	C/L	$\pm 15 . . .24$	200 mA		0.3	0.4	$-40 . .+85$	$\varnothing 42 \mathrm{~mm}$	$\begin{gathered} 4 \times \mathrm{M5} \\ \text { + Faston } \end{gathered}$	-	119	LTC 1000-SFC	$\begin{aligned} & \text { With feet + clamp } \\ & \text { Screen } \end{aligned}$
1000	± 2400	c/L	$\pm 15 . . .24$	200 mA	$\underset{\substack{\mathrm{DC}-100 \\(-1 \mathrm{CDB})}}{ }$	0.3	0.4	$-40 . .+85$	Busbar	$\begin{gathered} 4 \times \mathrm{M5} 5 \\ \text { + Faston } \end{gathered}$	-	120	LTC 1000-T	Screen
1000	± 2400	C/L	$\pm 15 . . .24$	200 mA	$\underset{\substack{\mathrm{DC}-100 \\(-10 \mathrm{CDB})}}{ }$	${ }^{0.3}$	0.4	$-40 . .+85$	Busbar	$\begin{gathered} 4 \times \mathrm{M5} \\ + \text { Faston } \end{gathered}$	-	121	LTC 1000-TF	With feet Screen
1000	± 2500	O/L	± 15	5 V	$\begin{array}{\|l\|l\|} \hline \mathrm{DC}-10 \\ \left.(-3 \mathrm{~dB})^{1}\right) \end{array}$	1.7	2	$-40 . . .70$	Aperture $18 \times 54 \mathrm{~mm}$	Burndy		127	HAR 1000-S	Burndy SMS6GE4
2000	± 2200	O/L	± 15	10 V	$\begin{gathered} \mathrm{DC}-10 \\ (-3 \mathrm{~dB})^{\prime \prime} \end{gathered}$	1.8	2.3	$-40 . . .85$	$\bigcirc 40 \mathrm{~mm}$	Screws		122	HTC 2000-S/SP4	
2000	± 3000	Fluxgate ITC	± 24	800 mA	$\begin{gathered} \mathrm{DC}-27 \\ (3 \mathrm{CB})^{0} \end{gathered}$	0.0015	0.01	-40...85	063 mm	D-Sub		128	ITC 2000-S/SP1	Class 0.5R accuracy D-Suab male 15cts Test circuit

$I_{P N}=2000 \mathrm{~A} . .4000 \mathrm{~A} \quad$ TTR Open-lope

	I_{p}	$\begin{aligned} & \text { 잉 } \\ & \stackrel{\circ}{\circ} \\ & \stackrel{7}{\circ} \\ & \stackrel{\omega}{0} \end{aligned}$	$\begin{aligned} & u_{c} \\ & v \end{aligned}$	$\begin{gathered} V_{\text {out }}^{\substack{\text { out }}} \\ \text { O }_{\mathrm{PN}} \end{gathered}$	Bw kHz			T_{A}	Connection				¢		Type	Features
									Primary		Secondary					
						\%	\%	${ }^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{~L} \end{aligned}$		$\begin{aligned} & \text { O} \\ & 0 \end{aligned}$	㐫				
2000	± 3500	C/L	$\pm 15 . . .24$	400 mA	$\underset{\substack{\text { DC-150 } \\(-1 \mathrm{COB})}}{ }$	0.2	0.325	-40...+85		$\varnothing 56 \mathrm{~mm}$		Lemo	-	129	LF 2005-S/SP1	Lemo eej.1B.304. cyc Internal screen
2000	500	C/L	$\pm 15 . .24$	400 mA	$\begin{gathered} \text { DC-100 } \\ (-10 B) \end{gathered}$	0.2	0.325	-40....80		$\varnothing 56 \mathrm{~mm}$		Lemo	-	130	LF 2005-S/SP27	Lemo ef..ib. 304 CYC internal screen Reversed current
2000	± 3500	C/L	$\pm 15 . .24$	400 mA	$\underset{\substack{\mathrm{DC}-100 \\(-1 \mathrm{OBB})}}{ }$	0.5	0.55	-40...+85		$\varnothing 56 \mathrm{~mm}$		4×M5	-	131	LF 2005-S/SP28	Screen
3000	± 3300	O/L	± 15	10 V	$\begin{gathered} \text { DC-10 } \\ (-3 \mathrm{da})^{1} \end{gathered}$	1.8	2.3	-40...85		$\varnothing 40 \mathrm{~mm}$		Screws		122	HTC 3000-S/SP4	
3300	± 5000	C/L	± 24	660 mA	$\begin{gathered} \text { DC-100 } \\ (-1 \mathrm{CDB}) \end{gathered}$	0.3	0.32	-25...+70		$\varnothing 102 \mathrm{~mm}$		Lemo		132	LT 4000-S/SP24	LEmo EGJ.1B.304. CYC Screen
3300	± 5000	C/L	± 24	660 mA	$\underset{\substack{\text { DC-100 } \\(-10 B)}}{ }$	0.3	0.32	-25...+70		¢ 102 mm		$3 \times \mathrm{M} 5$		${ }^{133}$	LT 4000-S/SP44	Internal screen
4000	± 6000	C/L	± 24	800 mA	$\begin{gathered} \text { DC-100 } \\ (-10 B) \end{gathered}$	${ }^{0.3}$	0.5	-25...+70		$\varnothing 102 \mathrm{~mm}$		$3 \times \mathrm{M} 5$		72	LT 4000-S	
4000	± 6000	C/L	± 24	800 mA	$\begin{gathered} \text { DC-100 } \\ (-1 \mathrm{CdB}) \end{gathered}$	0.3	0.5	$-40 . .+70$		$\varnothing 102 \mathrm{~mm}$		AMP		134	LT 4000-S/SP12	AMP CPC 13/9 Test circuit Screen
4000	± 6000	C/L	± 24	800 mA	$\underset{\substack{\text { DC-100 } \\(-10 B)}}{ }$	${ }^{0.3}$	0.5	$-40 . .+70$		ه 102 mm		$3 \times \mathrm{M5}$		72	LT 4000-S/SP34	
4000	± 6000	C/L	± 24	800 mA	$\begin{gathered} \mathrm{DC}-100 \\ (-1 \mathrm{da} \mathrm{~B}) \end{gathered}$	0.3	0.5	$-40 . .+70$		$\varnothing 102 \mathrm{~mm}$		Lemo		135	LT 4000-S/SP35	LEMO EGJ.1B.305. CYC Test circuit Internal screen
4000	± 6500	C/	± 24	1 A	$\begin{gathered} \mathrm{DC}-100 \\ (-10 \mathrm{CDB}) \end{gathered}$	0.3	0.5	-40...+85		¢ 102 mm		Cable		136	LT 4000-S/SP43	Screen
4000	± 6000	C/L	± 24	800 mA	$\begin{gathered} \text { DC-100 } \\ (-1 \mathrm{CBB}) \end{gathered}$	0.3	0.5	-25...+70		Busbar		$3 \times \mathrm{M} 5$		73	LT 4000-T	
4000	± 6500	C/L	± 24	${ }^{14}$	$\underset{\substack{\text { DC-100 } \\(-10 B)}}{ }$	${ }^{0.3}$	0.5	$-40 . .+85$		Busbar		Cable		137	LT 4000-T/SP40	
4000	± 6000	Fuxgate	± 24	1600 mA	$\begin{aligned} & \mathrm{DC}-82 \\ & (3 \mathrm{~dB})^{2} \end{aligned}$	0.0003	0.05	-40...+85		¢ 102 mm		$\begin{gathered} 7 \times M 5 \\ \text { inserts } \end{gathered}$		138	ITC 4000-S	Class 0.5R accuracy Test circuit

Notes:

1) Small signal bandwidth to avoid excessive core heating at high frequency

Dedicated data sheets are the only recognized reference documents for the given performances and data - Data sheets: www.lem.con

47

Mechanical adaptation accessories
 LTC 350-500 models

Accessories	References
Busbar Kit * (busbar : $155 \times 25 \times 6 \mathrm{~mm}$)	93.34 .41 .100 .0
Busbar Kit * (busbar : $112 \times 25 \times 6 \mathrm{~mm}$)	93.34 .41 .101 .0
Busbar Fastening Kit $* *$	93.34 .41 .200 .0
Feet fixing Kit ***	93.34 .43 .100 .0

Feet fixing Kit **

4
Rms voltage value for partial discharge extinction depends on the busbar. Refer to the datasheet of the corresponding product.

Mechanical adaptation accessories

LTC 600-1000 models

$$
\underbrace{}_{\text {CHc Screw M5×25 (x2) }}
$$

$$
\text { Q. Flat washer }(x 2)
$$

$$
\begin{aligned}
& \text { Flat washer (x2) } \\
& \text { Spring washer }(x 2) \\
& \text { Nut M5 (x2) } \\
& \text { Tightening torque Max. 2.4NT }
\end{aligned}
$$

Foot
for Feet, Bar and Clasps
Clamp

Lines	Accessories	References
1	Busbar KIT * (busbar : $210 \times 40 \times 12 \mathrm{~mm}$)	93.34 .61 .100 .0
2	Busbar KIT * (busbar : $185 \times 40 \times 8 \mathrm{~mm}$)	93.34 .61 .102 .0
3	Busbar KIT * (busbar : $285 \times 36 \times 12 \mathrm{~mm}$)	93.34 .61 .103 .0
4	Busbar KIT * (busbar : $260 \times 36 \times 12 \mathrm{~mm}$)	93.34 .61 .104 .0
5	Busbar KIT * (busbar : $195 \times 36 \times 10 \mathrm{~mm}$)	93.34 .61 .105 .0
6	Busbar KIT * (busbar : $36 \mathrm{~mm} \varnothing \times 325 \mathrm{~mm}$)	93.34 .61 .106 .0
7	Busbar KIT * (busbar : $185 \times 40 \times 10 \mathrm{~mm}$)	93.34 .61 .107 .0
8	Busbar KIT * (busbar : $180 \times 40 \times 12 \mathrm{~mm}$)	93.34 .61 .108 .0
9	Busbar Fastening Kit $(\mathrm{M5} \times 25)^{* *}$ dedicated to busbars from lines 1 to 5 and lines 7, 8. 93.34 .61 .200 .0	
10	Busbar Fastening Kit $(\mathrm{M} 5 \times 40$)** dedicated to busbar from line 6	93.34 .61 .201 .0
11	Feet fixing Kit ***	93.34 .63 .100 .0

including all the necessary for its mounting such as screws, washers, nuts, 2 clamps, busba
** as with * but without the busbar including screws and 2 feet

Rms voltage value for partial discharge extinction depends on the busbar Refer to the datasheet of the corresponding product.
$\mathrm{I}_{\mathrm{PN}}=2 \mathrm{~A} . . .10 \mathrm{~A}$ (Fault Detection)
TTR - Spec. App. $\overbrace{\text { fiwgate }}$

	A ${ }_{\text {P }}$	$\begin{aligned} & \text { 잉 } \\ & \text { 응 } \\ & \stackrel{5}{0} \\ & \stackrel{0}{2} \end{aligned}$	$\begin{aligned} & u_{c} \\ & \mathrm{v} \end{aligned}$	$\begin{aligned} & V_{\mathrm{oun}} \\ & \mathrm{I}_{\mathrm{out}} \\ & \text { © } \mathrm{I}_{\mathrm{PN}} \end{aligned}$	BW kHz		T_{A} . C	Connection				$\begin{aligned} & \frac{1}{2} \\ & 0 \\ & 0 \\ & 0 \\ & \end{aligned}$		Type	Features
I_{pN}									Primary	Secondary					
								\%	Apertue, busaba, other	\%	㐫				
2	± 8	$\stackrel{\substack{\text { Flux } \\ \text { "C" } \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline}}{ }$	24	20 mA	$\begin{aligned} & \mathrm{DC}-10 \\ & (-3 d B) \end{aligned}$	3	-25...+70		$\varnothing 63.2 \mathrm{~mm}$		Cable		139	CD 1000-S/SP6	Differential measurement: $2 \times 1200 \mathrm{~A}_{\text {RMS }}$
10	± 10	${ }_{\text {Flux }}{ }_{\text {F }}$	± 24	10 V	$\begin{gathered} \text { DC-20 } \\ (-3 d B) \end{gathered}$	3	-40....70		$2 \times$ Busbars 1 of $20 \times 20 \times 358 \mathrm{~mm}$ and 1 of $20 \times 20 \times 206 \mathrm{~mm}$		Cable		140	CD 1000-T/SP7	Differential measurement: $2 \times 1500 \mathrm{~A}_{\text {RMS }}$

$\mathrm{V}_{\mathrm{PN}}=0.03 \mathrm{~V}$ (Shunt Isolator)															IDT Features
$\begin{aligned} & \mathrm{V}_{\mathrm{PN}} \\ & \mathrm{~V} \end{aligned}$	v_{p}	$\begin{aligned} & \text { oे } \\ & \stackrel{\circ}{0} \\ & \frac{\pi}{0} \\ & \stackrel{0}{4} \end{aligned}$	$\begin{aligned} & u_{c} \\ & \mathrm{v} \end{aligned}$	$\begin{gathered} v_{\text {out }} \\ \mathrm{o}_{\mathrm{out}} \\ @ \mathrm{~V}_{\mathrm{PN}} \end{gathered}$	$\begin{aligned} & \mathrm{BW} \\ & \mathrm{kHz} \end{aligned}$		T_{A} ${ }^{\circ} \mathrm{C}$	Connection				$\begin{aligned} & \frac{1}{2} \\ & \stackrel{\rightharpoonup}{0} \\ & \frac{1}{2} \end{aligned}$		Type	
								Primary		Secondary					
								¢	$\begin{gathered} \text { Aportare, } \\ \text { Busbar } \\ \text { othere } \end{gathered}$	\%	\%				
0.03	± 0.045	Insulating digital technology technology	$\pm 15 . . .24$	50 mA	$\left.\begin{array}{\|c} \mathrm{DC}-10 \\ (3 \mathrm{dBB} \end{array}\right)$	0.2	$-40 . .+85$		Busbar		($\begin{gathered}\text { M5 } \\ \text { Connecting }\end{gathered}$		141	D1 30/SP1	Shunt Isolator Class 1R accuracy vs EN50463 when used with Class 0.2 shun

$I_{P A C}=0.1 A_{A C} \ldots 20 A_{A C}$ (Interference Frequencies Detection)
Rogowski

$\begin{gathered} I_{p} \\ A_{A C} \end{gathered}$	$\begin{aligned} & \text { 잉 } \\ & \stackrel{\circ}{\circ} \\ & \stackrel{5}{0} \\ & \stackrel{\omega}{6} \end{aligned}$	$\begin{aligned} & u_{c} \\ & v \end{aligned}$	$\begin{aligned} & V_{\text {out }} \\ & \mathrm{I}_{\text {out }} \\ & \text { © } \mathrm{p}_{\mathrm{p}} \end{aligned}$	$\begin{aligned} & \text { BW } \\ & \mathrm{kHz} \end{aligned}$		T_{A} . C	Connection						Type	Features
							Primary		Secondary					
					\%		\%	Aperture, busbar, othe	O	\#				
0.1... 20 Measurement of alternating signal on DC up to 1000 ADC	Rogowski	$\begin{gathered} \text { Self } \\ \text { powered } \end{gathered}$		0.02...3	3	-40...+85		$\varnothing 42 \mathrm{~mm}$		Cable		142	RA 1005-S	$\begin{aligned} & \text { g) For sinusoidal } \\ & \text { wave } \\ & 2 . \pi \cdot \mathrm{M}=25.10^{-6} \mathrm{H} \\ & \text { f in } \mathrm{Hz} \\ & \text { 2) Instantaneous } \\ & \text { Test circuit } \end{aligned}$
$0.1 \ldots 20$ Measurement of alternating signar on DC primary current up to 3000 ADC	Rogowski	$\begin{gathered} \text { Self } \\ \text { powered } \end{gathered}$		0.02...3	3	-25...+70		$\varnothing 102 \mathrm{~mm}$		Cable		143	RA 2000-S/SP1	$\begin{aligned} & \text { h) For sinusoidal } \\ & \text { wave } \\ & 2 . \pi \cdot \mathrm{M}=27.657 .10^{-6} \mathrm{H} \\ & \mathrm{f} \text { in } \mathrm{Hz} \\ & \text { 2) Instantaneous } \\ & \text { Test circuit } \end{aligned}$
0.1... 20 Measuremen of alternating signal on DC primary current up to 4000 ADC	Rogowski	$\begin{gathered} \text { Self } \\ \text { powered } \end{gathered}$		0.02...3	3	-40...+70		$\varnothing 102 \mathrm{~mm}$		Cable		144	RA 2000-S/SP2	h) For sinusoidal wave 2. $\pi . \mathrm{M}=27.657 .10^{-6} \mathrm{H}$ f in Hz 2) Instantaneous Test circuit
0.1... 20 Measuremen of alternating signal on DC primary current up to 4000 ADC	Rogowski	$\begin{gathered} \text { Siff } \\ \text { powered } \end{gathered}$		0.02...3	3	-40...+70		$\varnothing 102 \mathrm{~mm}$		LEMO connector		145	RA 2000-S/SP3	h) For sinusoidal wave 2. $\pi . \mathrm{M}=27.657 .0^{-6} \mathrm{H}$ f in Hz 2) Instantaneous Test circuit
$0.1 \ldots .20$ Measurement of alternating signal on DC primary current up to 4000 ADC	Rogowski	$\begin{gathered} \text { Self } \\ \text { powered } \end{gathered}$		0.02...3	3	$\begin{gathered} -40 . .+70 \\ \mid 1557 \\ \mid 150 \end{gathered}$		$\varnothing 102 \mathrm{~mm}$		Cable		146	RA 2000-S/SP4	h) For sinusoidal wave 2. $\pi . \mathrm{M}=27.657 .10^{-6} \mathrm{H}$ f in Hz 2) Instantaneous Test circuit
$0.1 \ldots 20$ Measurement of alternating signal on DC primary current up to 4000 ADC	Rogowski	$\begin{gathered} \text { Self } \\ \text { powered } \end{gathered}$		$0.02 \ldots 3$	3	-40...+70		$\left\|\begin{array}{c} \text { Busbar } \\ 20 \times 100 \times 340 \\ \mathrm{~mm} \end{array}\right\|$		Cable		147	RA 2000-T/SP2	$\begin{aligned} & \text { h) For sinusoidal } \\ & \text { wave } \\ & 2 . \pi \cdot \mathrm{M}=27.657 .10^{-6} \mathrm{H} \\ & \mathrm{f} \text { in } \mathrm{Hz} \\ & \text { 2) Instantaneous } \\ & \text { Test circuit } \end{aligned}$

(143) (144) (145) (146)

(4)

$I_{P N}=10 \mathrm{~A} \ldots 6000 \mathrm{~A}$
TTR－Track．／Sub．

1 PN	$=1$		6000 A					Open－10							Closed－Ioop
A	I_{p} A	$\begin{gathered} \frac{3}{0} \\ \frac{6}{O} \\ \frac{5}{6} \\ \stackrel{\circ}{\circ} \end{gathered}$	$\begin{aligned} & u_{c} \\ & v \end{aligned}$	$\begin{aligned} & V_{\text {out }} \\ & \mathrm{I}_{\mathrm{out}} \\ & {\text { © } \mathrm{I}_{\mathrm{PN}}}^{\text {a }} \end{aligned}$	Bw kHz		T_{A} ${ }^{\circ} \mathrm{C}$	Connection				$\begin{array}{\|l\|l} \hline \\ \vdots \\ 0 \\ \\ \hline \end{array}$		Type	Features
									Primary		Seoondary				
								\％	$\begin{gathered} \text { Aperture, } \\ \text { busbar, other } \end{gathered}$	\％	Other				
10	± 20	C／L	＋ 24		DC	${ }^{19}$	$\begin{aligned} & -25 . .+55 \\ & \hline 1 \mathrm{P67} \end{aligned}$		$\begin{aligned} & \text { Split core } \\ & \varnothing 15 \mathrm{~mm} \end{aligned}$		0.25 m wire ＋connector		148	PCM 10－P	
10	± 20	c／	＋ 24		DC	${ }^{18}$	－25．．．55		$\begin{aligned} & \text { Split core } \\ & \varnothing 15 \mathrm{~mm} \end{aligned}$		2 m wire		149	PCM 10－P／SP1	
20	± 40	ch	＋ 24	$\begin{aligned} & 4-20 \mathrm{~mA}_{\mathrm{DCD}} \\ & \hline(⿴ 囗 十 介 \end{aligned}$	DC	${ }^{19}$	$\begin{aligned} & -25 .+55 \\ & \hline 1 \mathrm{P} 67 \end{aligned}$		$\begin{aligned} & \text { Split core } \\ & 815 \mathrm{~mm} \end{aligned}$		0.25 m wire ＋connector		148	PCM 20－P	
20	＋ 20	c／	＋ 24	$\begin{aligned} & 4-20 \mathrm{~mA} \mathrm{~A}_{\mathrm{C}} \\ & \hline \end{aligned}$	DC	${ }^{19}$	－25．．．＋55		Split core $\varnothing 15 \mathrm{~mm}$		3 m wire		150	PCM 20－P／SP2	
20	＋ 20	ch	＋ 24	$\begin{array}{\|c\|} \hline 4-20 \mathrm{~mA}_{\mathrm{DC}} \\ @+\mathrm{I}_{\mathrm{p}} \\ \hline \end{array}$	DC	${ }^{19}$	－25．．．＋55		$\begin{aligned} & \text { Split core } \\ & \emptyset 15 \mathrm{~mm} \end{aligned}$		$\begin{aligned} & 0.25 \mathrm{~m} \text { wire } \\ & + \text { connector } \end{aligned}$		151	РСМ 20－P／SP3	
20	＋20	Ch	＋ 24	$\begin{array}{\|c} 4-20 \mathrm{~mA}_{\mathrm{OC}} \\ @+1_{\mathrm{P}} \end{array}$	DC	${ }^{19}$	－25．．．55		Split core		2.5 m wire＋		152	PCM 20－P／SP4	（2）
20	± 40	C／L	＋ 24		DC	${ }^{19}$	－25．．．55		$\begin{aligned} & \hline \text { Split core } \\ & \varnothing 15 \mathrm{~mm} \end{aligned}$		3 m wire		150	PCM 20－P／SP6	
30	± 60	c／	＋ 24	$\begin{array}{\|c\|c\|c\|c\|c\|c\|} \hline-20 \mathrm{~mA}_{\mathrm{DC}} \end{array}$	DC	${ }^{19}$	$\begin{aligned} & -25 . .+55 \\ & \hline 1 P 67 \\ & \hline \end{aligned}$		Split core		0.25 m wire		148	PCM 30－P	
30	＋30	C／L	＋ 24	$\begin{gathered} 4-20 \mathrm{~mA}_{\mathrm{oc}} \\ @+\mathrm{I}_{\mathrm{p}} \end{gathered}$	DC	19）	－25．．．＋55		$\begin{aligned} & \hline \text { Split core } \\ & \varnothing 15 \mathrm{~mm} \end{aligned}$		3 m wire		150	PCM 30－P／SP1	
5	± 25	C／	＋ 24	4 －12 mA ${ }_{\text {oc }}$	0．04－1（－3dB）	2＊）	－25．．．55		$\begin{aligned} & \text { Split core } \\ & \varnothing 15 \mathrm{~mm} \end{aligned}$		0.25 m wire ＋connecto		153	PCM 5－PR／SP1	$\begin{aligned} & \text { True } \\ & \text { Rutput } \\ & \text { Rutput } \end{aligned}$
5	± 25	C／	＋ 24	$4-12 \mathrm{~mA} \mathrm{D}_{0 \mathrm{c}}$	0．04－1（－3dB）	2^{29}	$\begin{aligned} & -25 .+655 \\ & \hline 1 \mathrm{P67} \end{aligned}$		Split core		2 m wire		154	PCM 5－PR／SP2	True RMS output
10	± 30	ch	＋ 24	${ }^{4-12 ~ m A ~}{ }_{\text {oc }}$	0．04－1（－3dB）	2^{29}	－25．．．＋55		Split core $\varnothing 15$ mm		0.25 m wire ＋connecto		153	PCM 10－PR／SP1	$\begin{aligned} & \text { True } \\ & \text { Reut } \\ & \text { Rout } \end{aligned}$
4000	4000	0／2	± 15	10 V	DC－3（t－3dB）${ }^{1 /}$	2	－25．．．85		Aperture		Fuicon		71	HAZ 4000－SB	Fuicon F2023A （6 terminals）
4000	4000	／L	± 15	20 mA	DC－3（t－－3dB）${ }^{1}$	2	－25．．．＋85		$\begin{array}{\|c\|} \hline \text { Aperture } \\ 162 \times 42 \mathrm{~mm} \end{array}$		Fuicon		71	HAZ 4000－SBI	$\begin{aligned} & \text { Fuiicon F2023A } \\ & \text { (6 terminals) } \end{aligned}$
4000	000	0／L	± 15	$\begin{array}{\|c\|} \hline 4 \mathrm{~mA} \mathrm{Q}-\mathrm{I}_{\mathrm{PN}} \\ 20 \mathrm{~mA} \text { + } \mathrm{l}_{\mathrm{PN}} \\ \hline \end{array}$	DC－3（＋－3dB）${ }^{1}$	2	－25．．．＋85		$\begin{array}{c\|} \text { Aperture } \\ 162 \times 42 \mathrm{~mm} \end{array}$		Fuicon		71	HAZ 4000－SB／SP1	$\begin{aligned} & \text { Fuiicon F2023A } \\ & \text { (6 terminals) } \end{aligned}$
4000	000	O／L	± 15	0－20 mA ${ }_{\text {oc }}$	$\underset{(+\mid-3 \mathrm{~dB})^{2!}}{\mathrm{Dc} 80.01 . .3}$	2	－25．．．＋85		$\begin{array}{\|c\|} \hline \text { Aperture } \\ 162 \times 42 \mathrm{~mm} \end{array}$		Fuicon		71	HAZ 4000－SRI	$\begin{aligned} & \text { True RMS output } \\ & \text { Fuicon F20233A } \\ & \text { (6 terminals) } \end{aligned}$
4000	4000	OL	± 15	$4-20 \mathrm{~mA} \mathrm{Ac}$	$\underset{\substack{\mathrm{DC} \& 0.015 . . .3 \\\left(+(-3 \mathrm{~dB})^{11}\right.}}{ }$	2	－25．．．＋85		$\begin{gathered} \text { Aperture } \\ 162 \times 42 \mathrm{~mm} \\ \hline \end{gathered}$		Fuicon		71	HAZ 4000－SRI／SP1	$\begin{aligned} & \text { True RMS output } \\ & \text { Fuicom F20233A } \\ & (6 \text { terminals) } \end{aligned}$
4000	4000	0／L	± 15	0－10 V_{oc}	$\underset{\substack{\mathrm{DC} \& 0.015 \ldots \ldots \\\left(+(-3 \mathrm{~dB})^{11}\right.}}{ }$	2	－25．．．＋85		$\begin{gathered} \text { Aperture } \\ 162 \times 42 \mathrm{~mm} \end{gathered}$		Fuicon		71	HAZ 4000－SRU	$\begin{aligned} & \text { True RMS output } \\ & \text { Fuicon Fo203A } \\ & (6 \text { terminals) } \end{aligned}$
6000	6000	O／L	± 15	10 V	DC－3（＋1－3dB）${ }^{1 /}$	2	－25．．．＋85		Aperture $162 \times 42 \mathrm{~mm}$		Fuicon		71	HAZ 6000－s	Fujicon F2023A （6 terminals）
6000	6000	O／L	± 15	20 mA	DC－3（t－－3dB）${ }^{1}$	2	－25．．．＋85		$\begin{gathered} \text { Aperture } \\ 162 \times 42 \mathrm{~mm} \end{gathered}$		Fuicon		71	HAZ 6000－SBI	$\begin{aligned} & \text { Fuicon F2023AA } \\ & (6 \text { (terminals) } \end{aligned}$
6000	± 6000	／L	± 15	$4 \mathrm{~mA} @-\mathrm{I}_{\mathrm{PN}}$ 20 mA＠＋l	DC－3（＋1－3dB）${ }^{1 /}$	2	－25．．．＋85		Aperture $162 \times 42 \mathrm{~mm}$		Fuicon		71	HAZ 6000－SBI／SP	Fujicon F2023A （6 terminals）
6000	6000	O／L	± 15	$0-20 \mathrm{~mA}_{\text {oc }}$	$\underset{\left(+(-3 \mathrm{~dB})^{11}\right.}{\mathrm{DC} 20.015}$	2	－25．．．＋85		$\begin{aligned} & \text { Aperture } \\ & 162 \times 42 \mathrm{~mm} \end{aligned}$		Fuicon		71	HAZ 6000－SRI	$\begin{aligned} & \text { True RMS output } \\ & \text { Fujicon F2023A } \\ & \text { (6 terminals) } \\ & \hline \end{aligned}$
6000	600	0／L	± 15	$4-20 \mathrm{~mA}_{\mathrm{oc}}$	$\underset{(+\mid-3 \mathrm{~dB})^{11}}{\mathrm{DC} \& 0 .{ }^{2}}$	2	－25．．．＋85		Aperture $162 \times 42 \mathrm{~mm}$		Fuicon		71	HAZ 6000－SR／S	$\begin{aligned} & \text { True RMS output } \\ & \text { Fuicom F2023 } \\ & (6 \text { terminals) } \end{aligned}$
6000	± 6000	0／L	± 15	$0-10 \mathrm{~V}_{\text {oc }}$	$\underset{\left(+(-3 \mathrm{~dB})^{11}\right.}{\mathrm{DC} 0.015}$	2	－25．．．＋85		$\begin{gathered} \text { Aperture } \\ 162 \times 42 \mathrm{~mm} \end{gathered}$		Fuicon		71	HAZ 6000－SRU	True RMS output Fujicon F2023A （6 terminals）

（46）（46）（56）（56） （15）（35）（35）

Notes：
1）Small signal bandwidth to avoid excessive core heating at high frequency

$V_{P N}=10 \mathrm{~V} \ldots 1500 \mathrm{~V}$
TTR - On-Board

Closed-loop
Features
$\begin{array}{l}\text { Isolation } \text { test }^{\text {vilage: } 4.2 \mathrm{~K} V_{\text {Rws }}}\end{array}$

$\mathrm{V}_{\text {PN }}=50 \mathrm{~V}$... 1500 V

50	75	Insulating digital technology	$\pm 15 . . .24$	50 mA	DC-14 (-3dB)	0.5	$-40 . .+85$	78	DVL 50	$2 \times \mathrm{M} 5$	$3 \times \mathrm{M} 5+$ Faston
${ }^{125}$	188	Insulating digital technology	$\pm 15 . .24$	50 mA	DC-14 (-3dB)	0.5	$-40 . .+85$	78	DVL 125	$2 \times \mathrm{M5}$	$3 \times \mathrm{M5}+$ Faston
150	225	Insulating digital technology	$\pm 15 . .24$	50 mA	DC-14(-3dB)	0.5	$-40 . .185$	78	DVL 150	$2 \times \mathrm{M5}$	$3 \times \mathrm{M5}+$ Faston
250	375	Insulating digital technology	$\pm 15 . .24$	50 m	DC-14 (-3dB)	0.5	$-40 . .+85$	78	DVL 250	$2 \times \mathrm{M} 5$	$3 \times \mathrm{M} 5+$ Faston
500	750	Insulating digital technology	$\pm 15 . .24$	50 mA	DC-14(-3dB)	0.5	$-40 . .+85$	78	DVL500	$2 \times \mathrm{M5}$	$3 \times \mathrm{M5}+$ Faston
50	125	Insulating digital technology	$\pm 15 . .24$	50 mA	DC-14(-3dB)	0.5	$-40 . .+85$	78	DVL 750	$2 \times \mathrm{M} 5$	$3 \times \mathrm{M} 5+$ Faston
750	1125	Insulating digital technology	$\pm 15 . .24$	50 mA	DC-14 (-3dB)	0.5	$-40 . .+85$	86	DVL 750/SP2	м5	M5 insert
1000	1500	Insulating digital technology	$\pm 15 . .24$	50 mA	DC-14(-3dB)	0.5	$-40 . .+85$	78	DVL 1000	$2 \times \mathrm{M} 5$	$3 \times \mathrm{M} 5+$ Faston
1000	1500	Insulating digital technology	$\pm 15 . .24$	50 mA	DC-14 (-3dB)	0.5	$-40 . .185$	87	DVL 1000/SP1	м5	Burndy vertical
1000	1500	$\begin{gathered} \text { Insulating digital } \\ \text { technology } \end{gathered}$	$\pm 15 . .24$	50 mA	DC-14 (-3dB)	0.5	$-40 . .+85$	86	DVL 1000/SP	M5	M5 insert
1000	1500	Insulating digital technology	$\pm 15 . . .24$	50 mA	DC-14 (-3dB)	0.5	-40... 85	88	DVL 1000/SP7	cable	cable
1000	1500	Insulating digital technology	$\pm 15 . .24$	50 mA	DC-14(-3dB)	0.5	$-40 . .185$	89	DVL 1000/SP8	M5	cable
1000	1500	$\begin{gathered} \hline \text { Insulating digital } \\ \text { technology } \\ \hline \end{gathered}$	$\pm 15 . . .24$	50 mA	DC-12 (3dB)	0.3	-40... 85	81	DV 1000	Cable	Cable
1200	1800	Insulating digital technology	$\pm 15 . .24$	50 mA	DC-12 (3dB)	0.3	$-40 . . .85$	82	DV 1200/SP2	Cable	M5 + Faston
1500	2250	$\begin{gathered} \text { Insulating digital } \\ \text { technology } \\ \hline \end{gathered}$	$\pm 15 . .24$	50 mA	DC-14 (-3dB)	0.5	$-40 . .+85$	78	DVL 1500	$2 \times \mathrm{M5}$	$3 \times \mathrm{M5}+$ Faston
1500	2250	$\begin{gathered} \hline \text { Insulating digital } \\ \text { technology } \\ \hline \end{gathered}$	$\pm 15 . .24$	50 mA	DC-14 (-3dB)	0.5	$-40 . .+85$	87	DVL 1500/SP1	M5	Burndy vertical
1500	2250	Insulating digital technology	$\pm 15 . . .24$	50 mA	DC-14(-3dB)	0.5	$-40 . .+85$	86	DVL 1500/SP2	M5	M5 insert
1500	2250	Insulating digital technology	$\pm 15 . .24$	50 mA	DC-14 (-3dB)	0.5	$-40 . .+85$	88	DVL 1500/SP5	cable	cable
1500	2250	Insulating digital technol technology	$\pm 15 . . .24$	50 mA	DC-14 (-3dB)	0.5	$-40 . .+85$	89	DVL 1500/SP6	M5	cable
1500	2250	Insulating digital echnology	$\pm 15 . .24$	50 mA	DC-12 (3dB)	0.3	$-40 . .+85$	82	DV 1500	Cable	M5 + Faston

Notes:
c) See response time in the individual data sheet
d) The primary and secondary connections of this transducer are done on PCB

$\mathrm{V}_{\mathrm{PN}}=140 \mathrm{~V} . . .4200 \mathrm{~V}$				TTR - On-Board					IDT		Fuxgate
$\pm \mathrm{V}_{\mathrm{pN}}$	$\pm V_{p}$	$\frac{\stackrel{\rightharpoonup}{0}}{0}$	U_{c}	$V_{\text {out }}$	BW	$\begin{gathered} x_{G} \\ T_{A}{ }_{A} \\ 25^{\circ} \mathrm{C} \end{gathered}$	T_{A}	$\begin{array}{rl} & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 \\ \hline \end{array}$	Type		듳
		$\stackrel{\square}{\square}$		@ $\mathrm{V}_{\text {pw }}$		$\underset{\substack{\text { with max } \\ \text { offset taken }}}{\% \text { V }}$	${ }^{\circ} \mathrm{C}$	-			
2000	3000	Insulating digital technology	$\pm 15 . . .24$	50 mA	DC-14 (-3dB)	${ }^{0.5}$	$-40 . .+85$	78	DVL 2000	$2 \times \mathrm{M} 5$	$3 \times \mathrm{M} 5+$
2000	3000	Insulating digital lechnology	$\pm 15 \ldots 24$	50 mA	DC-14 (-3dB)	0.5	$-40 . .+85$	87	DVL 2000/SP1	M5	Burndy vertical
2000	3000	Insulating digital technology	$\pm 15 . .24$	50 mA	DC-14 (-3dB)	0.5	$-40 . .+85$	88	DVL 2000/SP5	cable	cable
2000	3000	Insulating digital technology	$\pm 15 . .24$	50 mA	DC-14 (-3dB)	0.5	-40...85	89	DVL 2000/SP6	M5	cable
2000	3000	Insulating digital technology	$\pm 15 . .24$	50 mA	DC-12 (3dB)	0.3	-40...85	81	DV 2000	Cable	Cable
2000	3000	Insulating digital technology	$\pm 15 . .24$	50 mA	DC-12 (3dB)	${ }^{0.3}$	-40...85	82	DV 2000/SP1	Cable	M5 + Faston
2000	3000	Insulating digital technology	$\pm 15 . . .24$	50 mA	DC-12 (3dB)	0.3	$-40 . .+85$	83	DV 2000/SP2	M5	M5
2800	4200	Insulating digital technology	$\pm 15 \ldots 24$	50 mA	DC-12 (3dB)	0.3	$-40 . .+85$	90	DV 2800/SP1	M5 vertical	Burndy vertical
2800	4200	Insulating digital technology	$\pm 15 . .24$	50 mA	DC-12 (3dB)	0.3	-40...85	84	DV 2800/SP4	м5	м5
3000	4500	Insulating digital technology	$\pm 15 . . .24$	50 mA	DC-12 (3dB)	0.35	$-40 . .+85$	84	DV 3000/SP1	м5	M5
4000	6000	Insulating digital technology	$\pm 15 . .24$	50 mA	DC-12 (3dB)	0.3	-40...+85	91	DV 4000/SP1	м5	Burndy vertical
4000	6000	Insulating digital technology	$\pm 15 . .24$	50 mA	DC-12 (3dB)	0.3	-40...+85	90	DV 4000/SP2	M5 vertical	Burndy vertica
4200	6000	Insulating digital technology	$\pm 15 . .24$	7 V	DC-12 (3dB)	0.3	-40...85	92	DV 4200/SP1	м5	D-Sub
4200	6000	Insulating digital technology	$\pm 15 . .24$	50 mA	DC-12 (3aB)	0.3	-40... 85	81	DV 4200//P3	Cable	Cable
4200	6000	Insulating digital technology	$\pm 15 . . .24$	50 mA	DC-12 (3aB)	0.3	$-40 . .+85$	84	DV 4200/SP4	M5	м5
4200	6000	Insulating digital technology	$\pm 15 . . .24$	50 mA	DC-12 (3dB)	0.3	$-40 . .+85$	93	DV 4200/SP5	M5 verical	D-Sub
140	200	Fluxgate "C"	± 15	$\begin{gathered} 10 \mathrm{~V} / 200 \\ \mathrm{~V} \end{gathered}$	DC-300 (-1dB)	0.2 ® $V_{\text {P }}$	-40... 85	80	CV 3-200	$2 \times \mathrm{M} 5$	$4 \times \mathrm{M} 5$
350	500	Fluxgate "C"	± 15		DC-300 (-1dB)	0.2 ® V_{p}	$-40 . .+85$	80	CV 3-500	$2 \times \mathrm{M} 5$	$4 \times \mathrm{M} 5$
700	1000	Fluxgate "C"	± 15	$\begin{gathered} 10 \\ \text { V/1000 } \end{gathered}$	$\begin{gathered} \mathrm{DC}-500 \\ \left(-1 \mathrm{CBQ} \mathrm{Q}_{50}\right. \\ \left.\% \mathrm{~V}_{\mathrm{PN}}\right) \end{gathered}$	0.2 @ $V_{\text {p }}$	-40...+85	80	CV 3-1000	$2 \times \mathrm{M} 5$	$4 \times \mathrm{M} 5$
840	1200	Fluxgate "C"	± 15	$\begin{gathered} 10 \\ \text { v/1200 } \end{gathered}$	$\begin{gathered} \hline \mathrm{DC}-800 \\ \left(-\mathrm{TdB} @ 40 \% \mathrm{~V}_{\mathrm{PN}}\right) \\ \hline \end{gathered}$	0.2 © V_{p}	-40... 85	80	CV 3-1200	$2 \times \mathrm{M} 5$	$4 \times \mathrm{M} 5$
1000	1500	Fluxgate "C"	± 15	$\begin{gathered} 10 \\ \text { V/1500 } \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{DC}-800 \\ \left(-\mathrm{ddB} @ 33 \% \mathrm{~V}_{\mathrm{PN}}\right) \\ \hline \end{gathered}$	0.2 @ $V_{\text {P }}$	-40... 85	80	CV 3-1500	$2 \times \mathrm{M} 5$	$4 \times \mathrm{M} 5$
1400	2000	Fuxgate "C"	± 15	$\begin{gathered} 10 \\ \mathrm{v} / 2000 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{DC}-300 \\ \left(-1 \mathrm{CB} \text { e } 25 \% \mathrm{~V}_{\text {PN }}\right) \end{gathered}$	0.2 @ V_{p}	-40...185	80	CV 3-2000	$2 \times \mathrm{M} 5$	$4 \times \mathrm{M} 5$

 (2) (1) (2) (3)

TTR - On-Board

Energy Measurement for On-Board Applications: EM4T II

With the liberalization and/or privatization of some of the major rail networks, the opportunity for traction units to cross national boundaries now exists, using both the installed base of rail and planned rail networks.
This gave train designers the daunting task to develop multisystem locomotives to be used on the different existing networks.
These prime movers would be needed to operate on the different supply networks of bordering countries along the route without requiring an equipment exchange at the regional or network supply border.
Today, it is therefore technically possible to transfer people or goods throughout Europe, from Norway to Sicily for example, without any physical exchange of the locomotive (Picture 1). Changes in the Energy Markets in the form of deregulation and increased competition for large user contracts brought potential benefits for those willing to negotiate for their electrical traction supply requirements.
This negotiation however requires greater knowledge and understanding of the load profile of bulk supply points in one of the harshest electrical environments - the traction supply.
With the energy meter from LEM, the data for the precise calculation of both supplied and regenerated energy for billing purposes can be accomplished on the train, independently of the energy supplier.

The second generation of universal energy meters for traction especially designed for on-board applications

With the EM4T II energy meter LEM introduced the second generation of universal energy meters for electric traction units with the authorization for billings.
Thanks to the advanced capability (such as input channels Thanks to the advanced capability (such as input channels
to connect any actual available current and voltage transducer or transformer) of the EM4T II, it is used both in new multi-system locomotives and for retrofitting to all types of electrical rail vehicles already in operation.
Recently the new EN 50463 standards define characteristics of Recently, the new EN 50463 standards define characteristics of
energy measurement function (EMF) as well as transducers for energy measurement fo or AC measurement used for EMF. This evolution led LEM to upgrade EM4T to the latest model: EM4T II.

EM4T II - the load profile provider
EM4T II is a single energy meter complying to all the requirements of EN 50463 -x \& EN 50155 standards for metering
and On-Board use, and thus satisfies the requirements of EC Decision 2011/291/EC (TSI "Locomotives and passenger rolling stock").

EM4T I| processes signals from the transformer and electronic converter systems for current and voltage to calculate energy
values which are stored as load profile information. values which are stored as load profile information.
In this load profile (set and stored in intervals of 1, 2, 3, 5, 10 or 15 minctes pelad lal values are recorded together with data such as:

- Date and time stamp
- Events
- Train identification numbers
- Absolute energy values for consumption and
regeneration of active and reactive energy
- Frequency of the network ($16.7 \mathrm{~Hz}, 50 \mathrm{~Hz}, 60 \mathrm{~Hz}$ or DC)
- Additional "user" load profile like the voltage with
a shorter time interval (feature coming in a second design step)
- Position of the train at the time the load profile was tored and/or the event arose
- Further functions, such as voltage detection can be set.

The measured energy information includes separately the consumed and regenerated active and reactive energy and is stored in the load profile memory (at 5 minutes period length) for
at least 300 days. at least 300 day
The input variables (current and voltage) are connected to the measuring circuits of the EM4T II via differential inputs (Picture
2 and 3), designed for connection of all current and voltage transducers/transformers currently available on the market. Four input channels are proposed for metering of both DC and AC signals of any existing traction network (see chart 1).

The EM4T || is suitable for usage in multi-system vehicles. Supply systems $25 \mathrm{kV} 50 / 60 \mathrm{~Hz}$ and 15 kV 16.7 Hz , or either
$600 \mathrm{~V} D \mathrm{DC}, 750 \mathrm{VDC}, 1.5 \mathrm{kV} D \mathrm{CC}$ or 3 kV DC are covered. A system change is detected by the energy meter and stored in the load profile.
The requirements for current measurement at this level can be diverse.
A large aperture transducer is appropriate when the primary conductor is highly isolated to support the high level of voltage (15 to 25 kV AC as nominal level): LEM's ITC Transducer Series is of this category.

Shunts can also be used at this level associated to LEM DI models providing the required insulation and the class 1 R accuracy (when used with a class $0.2 R$ shunt).

TTR - On-Board
Picture 1
European rail networks
\square not electrified
\square electrified (DC) tracks
$\square 1.5 \mathrm{kV} \mathrm{DC}$
$\square 3 \mathrm{kV}$ DC
$\square 15 \mathrm{kV} 16.7 \mathrm{~Hz}$
$\square 25 \mathrm{kV} 50 \mathrm{~Hz}$
$\square 3 \mathrm{kV}$ DC / 25 kV 50 Hz

Picture 2: EM4T II

EM4T II

Energy meter for electrical traction unit railways

- Data recording according to EN $50463-\mathrm{x}$
- Accuracy 0.5 R according to EN 50463-2
- Multi-System capability for DC, $16.7 \mathrm{~Hz}, 50 \mathrm{~Hz}, 60 \mathrm{~Hz}$
- Supply systems according to EN50163: 25 kV 50 Hz , $15 \mathrm{kV} 16.7 \mathrm{~Hz}, 600 \mathrm{~V}$ DC, $750 \mathrm{VDC}, 1.5 \mathrm{kV}$ DC, 3 kV DC
- Measurement of consumed and regenerated active and reactive energy
- For DC optionally with up to 3 DC current channels
- Input for GPS receiver
- Load profile recording including location data
- RS-type interface for data communication
- Ethernet-interface (Available in the next version)

Version	Channel 1	Channel 2	Channel 3	Channel 4
AC	AC-voltage	AC-current		
ACDC	AC-voltage	AC-current	DC-voltage	DC-current
DC	DC-voltage	DC-current		
DCDC	DC-voltage	DC-current	DC-current	
DCDCDC	DC-voltage	DC-current	DC-current	DC-current

Chart 1: EM4T II possible configurations for inputs

For the DC networks, the transducer's inherent isolation properties are adequate.
Analog to Digital Sigma-Delta conversion processors suppress high frequency disturbances in all channels, enhancing even further the capacity to handle the often rapid supply transitions within traction supplies
The microprocessor reads the sampled values and calculates the real energy in adjustable intervals (standard value $=5 \mathrm{~min}$).
The results are then saved in flash memory (a special variant of an EEPROM).
The signals from 2 AC and 2 DC input channels (each for U and - input) are used to calculate the energy values. The high-
accuracy measurement of the energy value is guaranteed by the digitally sampled signal converter implemented, providing the highest level of temperature and long-term stability.
Optionally, the EM4T || for DC measurement is available in a version with a single voltage input and up to three current inputs to measure the energy consumption for vehicles with multiple power supply points.
The EM4T II has a dedicated RS232 interface input for receiving serial GPS-data messages according to NMEA 0183,
including the location data of the energy consumption point. It synchronizes also the internal clock of the meter using the obtained time information.

Picture 3: Block diagram of the LEM energy meter

A log book in full conformity with EN $50463-3$ is stored in the A. the operating vook information contains e.g. loss and gain of the operating voltage, power up/power down events of the supply voltage, clock synchronization, and the modification of
parameters influencing the energy calculating. parameters influencing the energy calculating.
Identification data of the vehicle or train are also stored and can
be retrieved separately. The self-luminous display of the EM4T II be retrieved separately. The self-luminous display of the EM4T II
shows cyclically all relevant energy and status information without required operations of a mechanical or optical button.
All measured and stored data can be read out via the RS-type interface (via modem or local).
The interface versions RS232, RS422 or RS485 are available. The applied data communications protocol is IEC 62056-21 and is therefore easily adaptable by all common remote reading systems. In the next version, the EM4T II will also provide an Ethernet-interface.
The supply voltage is selectable between 24 V and 110 V. Optionally, the EM4T II offers a power supply of 12 V for a communication unit (modem).
The operating conditions (considering EMC, temperature, vibration, etc.) meet the special requirements for traction use,
including EN 50155, EN 50121-3-2, EN $50124-1$, and EN 61373 . Thcluaing EN 50155 , EN 50121-3-2, EN 50124-1, and EN 61373. against the ingress of moisture or foreign objects according IP 65.

Standards \& Regulations

- EN 50463-x Draft:
(2012): Railway application Energy measurement on board trains DC measurement Class 2 AC measurement Class 1.5
- EN 50155 (2007):

Railway applications Electronic equipment used on rolling stock

- EN 50121-3-2 Railway applications (2006): Electromagnetic compatibility Part 3-2: Rolling stock - Apparatus
- EN 61373 Railway applications (2010):
- EN 50124-1
(2001): Rolling stock equipment Shock and vibration tests Railway applications Insulation coordination Part 1: Basic requirements
IEC 62056-21 Electricity metering
(2002): Data exchange for meter reading tariff and load control Part 21: Direct local data exchange

Part of a high voltage frame of a multi-system locomotive with the positions needed for current \& voltage measurement

DI 30... 200 mV
(Shunt isolator)
Class 1R
High galvanic isolation
DV-VOLTAGE FAMILY
1200 to 4200 V $_{\text {RMS }}$
One unique compact package
Class 0.75R accuracy
Low thermal drift

ITC 2000...4000-S FAMILY Better than Class 0.5R High temperature stability

LV 25-P/SP5 model in auxiliary inverter.

Noise (RMS) (ppm) (DC50 kHz) Note k)	$\mathrm{TCl}_{\mathrm{OE}}$ $T C V_{\text {of }}$ (ppm/K) Note k)	$T_{\mathrm{A}}$${ }^{\circ} \mathrm{C}$	Mounting				$\begin{aligned} & \text { د } \\ & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{y}{5} \end{aligned}$	000OOOi0	Type	Features
			$\begin{gathered} 0 \\ 0 \\ \hline \end{gathered}$		Measuring 19" rack electronic					
$\begin{aligned} & (\mathrm{DC}-100 \mathrm{KHz}) \end{aligned}$	2	10...45	-			Integrated		94	ITN 12-P	Metal housing for high immunity against external influence
15	2.5	10...+50		\bullet		26		95	$1760-\mathrm{S}$	
15	2	10...+50		\bullet		26		95	17 200-S	
N/A	${ }^{6.66}$	$-40 . .+85$		-		21.5		96	Ітв 300-s	
8	1	10...+50		\bullet		26		95	$1{ }^{1400-S}$	
$\begin{gathered} 0.006 \\ (1 \mathrm{kHz}-30 \mathrm{kHz}) \end{gathered}$	0.3	10...50		-		Integrated busbar diamete -		97	ITL 900-T	
$\begin{array}{\|c\|} \hline 15 \\ (\mathrm{DC}-100 \mathrm{kHz}) \\ \hline \end{array}$	0.5	10...40		\bullet		30		98	ITN 600-s	
6	0.5	10...+50		-		30		99	$1{ }^{17} 700-\mathrm{S}$	
16	0.5	10...50		\bullet		30		100	IT 700-SPR	Programmable from 80 A in step of 10 A
10	4	10...+50		-		30		99	$17700-\mathrm{SB}$	
10	0.3	10...+50		\bullet		30		99	ITN 900-S	
6	0.5	10...45		-		30		101	IT 1000-S/SP1	High bandwidth
$\begin{array}{\|c\|} \hline 125 \\ (0.1 \mathrm{~Hz}-10 \mathrm{kHz}) \\ \hline \end{array}$	1.38	-40...70		-		268		74	ITL 4000-S	

Notes:
Linearity measured at DC
i) Bandwidth is measured under small signal conditions - amplitude of $0.5 \% \mathrm{I}_{\mathrm{PN}}(\mathrm{DC})$
k) All ppm figures refer to $\mathrm{V}_{\text {out }}$ or $\mathrm{I}_{\text {out }}$ @ $\mathrm{I}_{\mathrm{PN}}\left(\right.$ (DC) except for ITL $900-\mathrm{T}$ where it refers to $\mathrm{I}_{\text {our }}=600 \mathrm{~mA}$
I) Electrical offset current + self magnetization + effect of earth magnetic field @ $T_{A}=+25^{\circ} \mathrm{C}$
m) Small signal 5% of $\mathrm{I}_{\mathrm{PN}}(\mathrm{DC}), 32 \mathrm{~A}_{\text {RMS }}$
n) Small signal $40 A_{\text {Rus }}$
o) Bandwidth is measured under small signal conditions - amplitude of $1 \% \mathrm{I}_{\mathrm{PN}}$ (DC)

N/A : Not Available
$\mathrm{I}_{\mathrm{PN}}=40 \mathrm{~A} \ldots 24000 \mathrm{~A}$
HIP

										Fluxate
Noise (RMS)$\begin{aligned} & \text { (ppm) } \\ & (\text { (DC-50kHz) } \\ & \text { Note k) } \end{aligned}$		T_{A}	Mounting						Type	Features
			\%		Measuring 19" rack electronic -					
28 (DC-100kHz)	0.1	$\begin{gathered} 0 . .+55 \text { Head } \\ +10 \ldots+40 \text { Elec. } \end{gathered}$			-	25.4		$102+103$	ITZ 600-SPR	Programmable by steps of 20 A from 40 A to 620 A
60 (DC-100kHz)	0.3	$\begin{gathered} 0 . . .+55 \mathrm{Head} \\ +10 \ldots+40 \mathrm{Elec} . \\ +0 \end{gathered}$			-	25.4		$102+103$	ITZ 600-SBPR	Programmable by steps of 20 A from 40 A to 620 A
27 (DC-100kHz)	0.1	$\begin{gathered} 0 . .+55 \mathrm{Head} \\ +11 \ldots+40 \text { Elec. } \end{gathered}$			\bullet	50		$102+104$	${ }^{1 T} 2000-\mathrm{S}$	
60 (DC-100kHz)	0.3	$\begin{gathered} 0 . . .+55 \text { Head } \\ +10 \ldots+40 \text { Elec. } \end{gathered}$			-	50		$102+104$	IT 2000-SB	
42 (DC-100kHz)	0.1	$\begin{gathered} 0 . .+55 \mathrm{Head} \\ +10 \ldots+40 \text { Elec. } \end{gathered}$			-	50		$102+104$	IT 2000-SPR	$\begin{aligned} & \text { Programmable by } \\ & \text { steps of } 125 \mathrm{~A} \text { from } \\ & 125 \mathrm{~A} \text { to } 2000 \mathrm{~A} \end{aligned}$
60 (DC-100kHz)	0.3	$\begin{gathered} 0 . .+55 \mathrm{Head} \\ +10 . \ldots+40 \text { Elec. } \end{gathered}$			-	50		$102+104$	IT 2000-SBPR	Programmable by steps of 125 A from 125 A to 2000 A
20 (DC-100kHz)	0.1	$\begin{gathered} 0 \ldots+55 \mathrm{Head} \\ +10 \ldots+40 \text { Elec. } \\ \hline \end{gathered}$			-	140.3		$102+105$	$175000-8$	
60 (DC-100kHz)	0.3	$\begin{array}{r} 0 \ldots+55 \mathrm{Head} \\ +10 \ldots+40 \text { Elec. } . \end{array}$			-	140.3		$102+105$	IT 5000-SB	
20 (DC-100kHz)	0.1	$\begin{gathered} 0 \ldots+55 \mathrm{Head} \\ +10 \ldots+40 \text { Elec. } \end{gathered}$			-	100		$102+106$	IT 10000-S	
60 (DC-100kHz)	0.3	$\begin{gathered} 0 \ldots+55 \text { Head } \\ +10 \ldots+40 \text { Elec. } \\ \hline \end{gathered}$			-	100		$102+106$	IT 10000-SB	
20 (DC-100kHz)	0.1	$\begin{gathered} 0 \ldots+55 \mathrm{Head} \\ +10 \ldots+40 \text { Elec. } \\ \hline \end{gathered}$			\bullet	150.3		$102+107$	IT 16000-S	
60 (DC-100kHz)	0.3	$\begin{gathered} 0 \ldots+55 \text { Head } \\ +10 \ldots+40 \text { Elec. } \\ \hline \end{gathered}$			-	150.3		$102+107$	IT 16000-SB	
20 (DC-100kHz)	0.1	$\begin{gathered} 0 . .+55 \text { Head } \\ +10 \ldots+40 \text { Elec. } \\ \hline \end{gathered}$			-	150.3		$102+107$	17 24000-s	

(6)
(10)

Notes:
i) Linearity measured at $D C$
j) Bandwidth is measured under small signal conditions - amplitude of $0.5 \% \mathrm{I}_{\mathrm{PN}}$ (DC)
k) All ppm figures refer to $\mathrm{V}_{\text {out }}$ or $\left.\mathrm{I}_{\text {out }} @\right|_{P N}(D C)$ except tor ITL 900-T where it refers to $\mathrm{o}_{\text {our }}=600 \mathrm{~mA}$

1) Electrical offset current + self magnetization + effect of earth magnetic field @ $T_{A}=+25^{\circ} \mathrm{C}$
m) Small signal 5% of $\mathrm{I}_{\mathrm{PN}}(\mathrm{DC}), 32 \mathrm{~A}_{\text {Rus }}$
n) Small signal $40 A_{\text {pus }}$
o) Bandwidth is measured under small signal conditions - amplitude of $1 \% \mathrm{I}_{\text {PN }}(\mathrm{DC})$
$\left.\right|^{64}$

AUTOMOTIVE

In the automotive market, LEM works with all the major car manufacturers and Tier-1 suppliers in the world, and supplie galvanically-isolated electronic transducers that measure electrica parameters in battery-management and motor-control applications.

The ever more stringent requirements for energy efficiency and reduced CO2 emissions lead car manufacturers to increasingly depend on on-board electrical components. From electric powersteering and stop-start technologies to on-board navigation and infotainment systems, these components put an additional load o the electrical circuits and particularly the battery, making it essential to control the energy generated and consumed by the various onboard systems. In collaboration with its customers and with the help of powerful simulation techniques, LEM uses the most-appropriate technology (from Hall-cell to fluxgate) to address the specific need of measuring the currents (coulombs) entering and leaving the car's battery and/or the alternator. This allows an intelligent management of available power that leads to the increased efficiency of today's internal-combustion engines. More importantly still, the hybrid- and electric-vehicles entering the market today depend on accurate measurement of battery-pack currents to determine the available driving range and recharging strategy. LEM has the technology.

Not only must battery currents be accurately measured in hybrid- and electric-vehicles, but the electric motors driving the wheels of this new generation of automobiles also need to be precisely controlled to allow smooth operation. Electric motor phase-current sensing has been LEM's core competency since its beginning and remains today a major application for its technology. LEM has a dedicated product range for measuring phase-currents in motors and DC-DC converters essential to all hybrid- and electric-vehicles.

LEM is a key player in the new generation of automobiles, using its know-how acquired over 40 years to develop the specific technologies to measure battery and motor-phase currents that allow the car industry to meet the ever increasing requirements in energy efficiency. The following pages give you an introduction into LEM technology for automotive applications

HC2F model in inverter.

(1) High-voltage battery

A HAH1DR - HAH3-HC2-HC5-HC6-CKSR
(2) Vehicle control unit
(3) Charger
(4) Motor controller
(5) Electric motor and transaxle
(6) DC/DC converter
(7) Electric power steering

Automotive Selection Guide

LEM is dedicated to deliver products meeting the highest quality standards.
These levels of quality may differ according to the application as well as the necessary standards to comply with.
This quality has to be reached, maintained and constantly improved for both our products and services. The different
LEM design and production centers around the world are ISO/TS 16949, ISO 9001 and/or ISO 14001 certified.
LEM
ISO/TS 16949: 2009
ISO 14001: 2004
ISO 9001: 2008
$\begin{array}{ll} & \text { SWITZERLAND } \\ & \text { ISO 14001: } 2001: 2008 \\ & \text { IRIS: 2009 } \\ \text { LEM electronics } & \text { ISO 9001: } 2008\end{array}$
$\begin{array}{ll}\text { LEM electronics } & \text { ISO 9001: 2008 } \\ \text { (CHINA) Co, Ltd } & \text { ISO/TS 16949: } 2009\end{array}$ ISO 14001: 2004
IRIS: 2009
LEM Japan ISO 9001: 2008
TVELEM ISO 9001: 2008
(RUSSIA)
ISO 9001: 2008
Several quality tools have been implemented at LEM to assess and analyze its performances. LEM utilizes this
information to take the necessary corrective actions to remain a responsive player in the market.
The most representative are:

- DPT FMEA (Design, Process \& Tool Failure Mode Effect - DPT FMEA (Design, Process \& T.
Analysis) tool used preventively to:
o identify the risks and the root causes related to the product, the process or the machinery
set up the corrective actions
ontrol Plan: Description of checks and monitoring actions Control Plan: Description of checks and
executed along the production process
- Cpk-R\&R (Capability for Processes \& Measurement Systems):
- Cpk: Statistical tool used to evaluate the ability of a production procedure to maintain the accuracy within a specified tolerance
o R\&R: Repeatability and Reproducibility: Tool to monitor
the accuracy of a measurement device within a prethe accuracy of a measurement device within a pre-
determined tolerance determined tolerance
- QOS - 8D (Quality Operating System - Eight Disciplines):
- 8D: Problem solving process used to identify and
eliminate the recurrence of quality issues
eliminate the recurrence of quality issues
- QOS: System used to solve problems
- IPQ (Interactive Purchase Questionnaire): Tool aimed at involving the supplier in the quality of the purchased parts and spare parts.
In addition to these quality programs, and since 2002, LEM embraces Six Sigma as its methodology in pursuit of business excellence. The main goal is to create an environment in which anything less than Six Sigma quality is
unacceptable. unacceptable.

Key Six Sigma Statistics			
Company Status	Sigma Level	Defect Free	Defects Per Million
Non Competitive	2	65\%	308,537
	3	93\%	66,807
Industry Average	4	99.4\%	6,210
	5	99.976\%	233
World Class	6	99.9997\%	3.4

LEM's Standards
LEM transducers for Industry and traction are designed and tested according to recognized worldwide standards.
C CE marking is a guarantee that the product complies with the European EMC directive
$2004 / 108 / E E C$ and low voltage directive and therefore warrants the electromagnetic compatibility of the transducers. Traction transducers comply to the EN 50121-32 standard (Railway EMC standard).
UL is used as a reference to define the flammability of the materials used for LEM products (UL94V)) as weke materials classification when transducers dedicated for traction applications.
LEM is currently UL recognized for key products. You can consult the UL website to get the updated list of recognized models at www.UL.com.
The EN 50178 standard dedicated to "Electronic Equipment for use in power installations" in industrial applications is our standard of reference for electrical, environmental and mechanical parameters.
It guarantees the overall performances of our products in industrial environments.
All of the LEM Industry products are designed according to the EN 50178 standard except if dedicated to railway
applications. applications.
In that case, the EN 50155 standard dedicated to "Electronic
Equipment used on Rolling stock" in railway applications is Equipment used on Rolling stock" in railway applications is
our standard of reference for electrical, environmental and our standard of reference for electrical, environmental and
mechanical parameters. It guaral parameter
It guarantees then the overall performances of our products in raliway environments.
All of the LEM traction products are designed according to
the EN 50155 standard. standard.
The individual data sheets precisely specify the applicable standards, approvals and recognitions for individual products. The EN 50178 standard is also used as reference to design
the creepage and clearance distances for the transducers versus the needed insulation levels (rated insulation voltage) and the conditions of use.

The rated insulation voltage level for transducers in "industrial" applications, is defined according to several
criteria listed under the EN 50178 standard and $\mid E C$ 61010-1 standard ("Safety requirements for electrical equipment for measurement, control and laboratory use"). Some criteria are dependent on the transducer itself when the others are linked to the application.
These criteria are the following:

- Clearance distance (the shortest distance in air between two conductive parts)
- Creepage distance (the shortest distance along the surface of the insulating material between two conductive parts)
- Pollution degree (application specific - this is a way to
classify the micro-environmental conditions having effect classify the micro-environmental conditions having effect on the insulation)
Over-voltage category (application specific - characterizes the exposure of the equipment to over-voltages)
- Comparative Tracking Index (CTI linked to the kind of material used for the insulated material) leading to a classification over different Insulating Material groups
- Simple (Basic) or Reinforced isolation need

LEM follows this thought process for all the transducer designs:
Example: LTSP 25-NP, current transducer in a motor drive

Conditions of use:

Creepage distance (on case) 12.3 mm
Clearance distance (on PCB, footprint as above figure as an example): 6.2 mm
CTI: 175 V (group IIIa)
Over-voltage category: III
Pollution Degree: 2
Basic or Single insulation
According to EN 50178 and IEC 61010-1 standards:
With clearance distance of 6.2 mm and PD2 and OV III, the rated insulation voltage is of $600 \mathrm{~V}_{\text {RMS }}$.
With a creepage distance of 12.3 mm and PD2 and CTI of 175
V (group illa), this leads to a possible rated insulation voltag of $1000 V_{\text {RMs }}$.

In conclusion, the possible rated insulation voltage, in these conditions results from the creepag (the lowest value given by

Reinforced insulation

Let's look at the reinforced insulation for the same creepage and clearance distances as previously defined:
When looking at dimensioning reinforced insulation, from the clearance distance point of view, with OV III and according to EN 50178 and IEC 61010-1 standards, the rated insulation voltage is given whatever the pollution degree at $300 \mathrm{~V}_{\text {RMS }}$
From the creepage distance point of view, when dimensioning reinforced insulation, the creepage distance taken into that is to say $123 / 2=6.15 \mathrm{~mm}$. that is to say $12.3 / 2=6.15 \mathrm{~mm}$.
With that value, and PD2 and CTI of 175 V (group IIIa), this leads to a possible rated insulation voltage of $500 \mathrm{~V}_{\text {RMS }}$.
In conclusion, the possible reinforced rated insulation voltage, in these conditions of use, is of $300 \mathrm{~V}_{\text {RMS }}$ (the lowest value
given by the both results from the creepage and clearance distances).
For railway applications, the EN 50124-1 for all electrical and - Clearances and creepage distances as reference to design the creepage and clearance distances for the transducers versus the needed insulation levels (rated insulation voltage) and the conditions of use,
The rated insulation voltage level allowed by a transducer intended to be used in an application classified as being
"Railway", is defined according to several criteria listed under the EN 50124-1 standard.
These criteria are the same as per the EN 50178 (seen previously) and are the following:
Clearance distance,
Creepage distance,
Pollution degree,
Over-voltage category
Comparative Tracking Index (CTI),

- Simple (Basic) or Reinforced isolation need.

LEM follows this thought process for the railway transducer designs:

Example: LTC 600-S, current transducer in an propulsion inverte
Conditions of use:
Creepage distance: 66.70 mm ,
Clearance distance: 45.90 mm ,
CTI: 600 V (group I),
Over-voltage category: II,
Pollution Degree: 3.

Basic or Single insulation
According to EN 50124-1 standard: With clearance distance of 45.90 mm and PD3, U_{Ni} (Rated impulse voltage) $=30 \mathrm{kV}$. With $U_{\text {N }}=30 \mathrm{kV}$ \& OV II, the rated insulation voltage (AC or DC) called " U_{Nm} " can be from $>=6.5$ up to $<8.3 \mathrm{kV}$. With a creepage distance of 66.70 mm and PD3 and CTI of 600 V (group I), it is allowed to have $12.5 \mathrm{~mm} / \mathrm{kV}$, leading to a possible rated it the possible rated $U_{\text {Nm }}$ of 5.336 kV ,
In conclusion, the possible rated insulation voltage, $U_{N M}$,
in these conditions of use, is of 5.336 kV (the lowest value in these conditions of use, is of 5.336 kV (the lowest value
given by the both results from the creepage and clearance distances).

Reinforced insulation:
Let's look for the reinforced insulation for the same creepage and clearance distances as previously defined:

When dimensioning reinforced insulation, from the clearance distance point of view, the rated impulse voltage, U_{N}, shall be 160% of the rated impulse voltage required for basic insulation.
The clearance distance of 45.90 mm is already designed and then, we look for the reinforced insulation with this distance. Reinforced $U_{N w}=30 \mathrm{kV}$ obtained with the clearance distance of 45.90 mm .
Basic $U_{\mathrm{Ni}}=$ Reinforced $U_{\text {Ni }} / 1.6=18.75 \mathrm{kV}$.
Reinforced $U_{\text {Nm }}$: From $>=3.7$ up to $<4.8 \mathrm{kV}$, according to the clearance distance
From the creepage distance point of view, when dimensioning forced insulation, the rated insulation voltage $U_{N s}$ shall be two times the rated insulation voltage required for the basic insulation.
With a creepage distance of 66.70 mm and PD3 and CTI of 600 V (group I), it it then allowed to have $25 \mathrm{~mm} / \mathrm{kV}(2 \times 12.5)$ vs. $12.5 \mathrm{~mm} / \mathrm{kV}$ previously (for basic insulation), leading to a
possible reinforced rated insulation voltage U of 2.668 kV . In conclusion, the possible reinforced rated insulation voltage $U_{\text {Nm }}$ in these conditions of use, is of 2.668 kV (the lowest value given by the both results from the creepage and clearance distances).

IRIS

Certification RaHS
According to RoHS 2 directive 2011/65/EU

Welcome in a

Conssonjasy

LEEM Six Sigma Management Program

At the heart of power electronics
产"

LLEM LEM GROUP design SPECIFICATION

LEM provides the technical solution for current and voltage measurements from a wide range of possibilities for various parameters, not only electrical but also mechanical

1. Mechanical features:

A wide range of transducers to be through hole PCB
mounted, surface mounted or panel mounted with an aperture or an integrated primary conductor or both.

Multiple mounting possibilities
Models such as the LF series offer several horizontal or vertical mounting possibilities, in very compact
packages, allowing the user to select the most appropriate transducer mounting configuration for the application.

LEM's ASICs (Application Specific Integrated Circuit) used in LEM transducers have been a great contributor
towards the miniaturization of the transducers volumes thanks to the integration of the complete electronics onto a unique chip.
Various mechanical designs are proposed for various series covering even the same current ranges to answer to different mounting constraints in applications.
Need to mount a current transducer without
disconnecting the primary conductor in disconnecting the primary conductor in an existing application? This is a job for the HTR or HOP devices
in industrial applications or PCM models in trackside applications. Indeed, they are able to be opened and to be clamped onto the primary conductor. They're perfect for retrofit applications without disconnection.
2. Electrical features

- Accuracy

Accuracy is a fundamental parameter in electrical systems. Selecting the right transducer is often a tradeoff between several parameters: accuracy, frequency esponse, weight, size, costs, etc.
The measuring accuracy for LEM transducers depends primarily on the operating principle.
Open Loop transducers are calibrated during the manufacturing process and typically provide accuracy better than 2% of the nominal range at $25^{\circ} \mathrm{C}$. For to corresponding datasheets.
New ASIC based Open Loop transducers are being developed to provide improvement in gain and offset drift an accuracy performance closer to Closed Loop models. Closed Loop current and voltage transducers provide excellent accuracy at $25^{\circ} \mathrm{C}$, in general below 1% of the nominal range, and a reduced error over the specified emperature range, thanks to their balanced flux operation.

Fluxgate based transducers are high performance transducers with exceptional accuracy levels over their
operating temperature range.

- Supply voltage and consumption

Most of the transducers are working for bipolar measurements using a bipolar supply voltage.
$U_{\mathrm{C}}=+/-12 \mathrm{~V} ;+/-15 \mathrm{~V} ;+-24 \mathrm{~V}$; ...
However, due to power electronics evolution, and thanks to ASIC emergence, a large range of transducers are designed for bipolar measurements with a single unipolar power supply with respect to ground (0 V) : $U_{\mathrm{C}}=+5 \mathrm{~V}$ or 3.3 V .

This is a great factor of low power consumption.
Power consumption is linked to the kind of technology used for the transducer. For instance, the following typical currents are consumed versus the technologies used (this is an important parameter to take into account at the design phase):

Current consumption $\mathrm{I}_{\mathrm{C}}(\mathrm{mA})$

Reference access
Models powered with +5 V or +3.3 V , mostly using an an external pin or receive an external voltage reference to share it with microcontrollers or A/D converters for perfect communication.
Performances such as offset, gain and offset drifts can be improved by communicating with the microcontroller directly. Some special ASICs have been designed by LEM to answer to that specific market requirement. Indeed ASICs' technology allows some specific functions gain drifts.

Frequanar respose
The frequency response of a transducer is also primarily linked to the embedded technology.
Some key factors affecting the bandwidth performance, for the afferent technologies that LEM offers, are for example

- Open Loop: Core geometry, number and thickness of the laminations, type of core material and Hall effect chip, etc directly impact
the bandwidth. However use of the latest generation of ASICs has substantially improved that performance.
- Closed Loop, Fluxgate types: Coupling between primary and secondary (depending on
the mechanical and magnetic circuit designs) the mechanical and magnetic circuit designs) and the core material have a large influence on the bandwidth
- For the DV, DI, DVL-Type and PRiME technologies, it is a question of electronic limitation of the device output.
- For Closed Loop Hall effect voltage the primary inductance. Please refer to the response time in the individual data sheets.

Bandwidth (kHz)

Operating Temperature Range
The operating temperature range is based on the materials, the construction of the selected transducer, typically $-40,-25$, or $-10^{\circ} \mathrm{C}$ while the maximums are + $50+70,+85$, or $+105^{\circ} \mathrm{C}$

LEM offers a comprehensive range of transducers optimized for industrial operating environments.

The transducers included in this catalogue have various temperature specifications related to their global accuracy over a specific operating temperature range.
LEM can also provide transducers with operating temperature ranges outside the listed selection to fulfill a specific requirement.

Output signal

LEM transducers are available with different output signals, mainly depending on the operation principle and the application.
Closed Loop, fluxgate IT \& ITC, DV \& DVL \& DI, current transformer type transducers generally provide a current output, proportional to the primary signal. The user can obtain a voltage signal by defining a
within the limits specified in the datasheet.

Open Loop, fluxgate C \& CAS \& CTSR types, PRiME transducers directly provide an amplified voltage signal proportional to the primary current.
In the case of single supply voltage, the output signal varies around a nonzero reference.
Some transducers series offer (regardless of the technology) specific output signals, adapted to the kind applications (trackside, process automation...), such as :

Standard output signals (e.g. 0-5 VDC, 0-10
VDC or $4-20 \mathrm{~mA}$) VDC or 4-20 mA)

- But also, RMS or T-RMS ("True Root Mean Square") calculation to accurately measure or in noisy environments. or in noisy environments.

Voltage measurement
LEM provides a wide selection of solutions for Galvanically isolated voltage measurement, at various levels of performance.
There are two different options for voltage measurement:

- User specified primary resistor:

The user connects a primary resistor in series with the transducer. The value of the primary resistor R_{1} is selected according to the voltage to be measured. This approach allows
for maximum flexibility.

- Integrated primary resistor: The integrated primary resistor R_{1} predefines the nominal measuring voltage of the transducer

LEM offers a wide selection of nominal voltage levels to cover variety of applications.

[^0]

$59 \quad$ LF 505-S/SP15

Dimension Drawings

7

[^1]

Dimension Drawings

All dimensions are AP50.400 B420 \qquad

169 DH 500...2000 в 420L B

1) When used with L (LAS): current transducer with secondary winding and unipolar power supply
using Eta technology

When used with C (CAS): current transducer with ectangular magnetic circuit + unipolar power supply

When used with H (HAS): current transducer with rectangular magnetic circuit using O / L Hall effect
technology

PRODUCT CODING / Industrial \& Traction Transducers

Symbols and Terms

Frequency bandwidth
Comparative Tracking Index
Clearance distance
Creepage distance
Sensitivity
Linearity error
Current consumption
Zero offset current, $T_{A}=25^{\circ} \mathrm{C}$
Electrical offset current, $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Residual current @ $I_{p}=0$ after an overload
Thermal drift of offset current
Max. allowable output current at $I_{\text {PN }}$ or $V_{P N}$
Primary nominal RMS current
Primary current
Primary current, measuring range
Primary residual current
Secondary current
Secondary nominal RMS current
Protection degree
Turns ratio
Mutual inductance
Number of turns
Number of primary turns
Number of secondary turns
Turns ratio
Number of turns (test winding)
Internal measuring resistance
Load resistance
Minimum measuring resistance at $T_{\text {Amax }}$
Maximum measuring resistance at $T_{\text {Amx }}$
Primary resistor (voltage transducer)

Primary coil resistance at $T_{\text {Amax }}$
Secondary coil resistance at $T_{\text {Amx }}$
Ambient operating temperature
Temperature coefficient of $R_{\text {m }}$
Temperature coefficient of $\mathrm{I}_{\text {out }}$
Temperature coefficient of $\mathrm{I}_{0 \mathrm{E}}$
Temperature coefficient of $V_{\text {out }}$
Temperature coefficient of $V_{0 E}$
Temperature coefficient of $V_{\text {Ref }}$
Temperature coefficient of $V_{\text {our }} / V_{\text {Ref }} @ I_{\mathrm{p}}=0$
Temperature coefficient of the gain
Response time
Reaction time
Supply voltage
Rated isolation voltage RMS, reinforced or basic isolation RMS voltage for AC isolation test, $50 \mathrm{~Hz}, 1 \mathrm{~min}$
RMS voltage for partial discharge extinction @ 10 pc Rated insulation voltage according to EN 50124-1 Impulse withstand voltage, $1,2 / 50 \mu \mathrm{~s}$ Hall Voltage

Zero offset voltage, $T_{A}=25^{\circ} \mathrm{C}$
Electrical offset voltage, $T_{A}=25^{\circ} \mathrm{C}$
Residual voltage @ $\mathrm{I}_{\mathrm{p}}=0$ after an overload
Temperature variation of offset voltage
Output voltage at $\pm \mathrm{I}_{\text {PN }}$ or $V_{\text {PN }}$
Primary nominal RMS voltage
Primary voltage, measuring range
Reference voltage
Typical accuracy, $T_{A}=25^{\circ} \mathrm{C}$
Global accuracy @ $I_{\text {PN }}$ or $V_{\text {PN }} T_{A}=25^{\circ} \mathrm{C}$

5 Year Warranty on LEM Transducers

We design and manufacture high quality and highly reliable products for our customers all over the world.

We have delivered several million current and voltage transducers since 1972 and most of them are still being used today for traction vehicles, industrial motor drives, UPS systems and many other applications requiring high quality standards.

The warranty granted on LEM transducers is for a period of 5 years (60 months) from the date of their delivery (not applicable to Energy-meter product family for traction and automotive transducers where the warranty period is 2 years).

During this period LEM shall replace or repair all defective parts at its' cost (provided the defect is due to defective material or workmanship).

Additional claims as well as claims for the compensation of damages, which do not occur on the delivered material itself, are not covered by this warranty.

All defects must be notified to LEM immediately and faulty material must be returned to the factory along with a description of the defect.

Warranty repairs and or replacements are carried out at LEM's discretion.
The customer bears the transport costs. An extension of the warranty period following repairs undertaken under warranty cannot be granted.

The warranty becomes invalid if the buyer has modified or repaired, or has had repaired by a third party the material without LEM's written consent.

The warranty does not cover any damage caused by incorrect conditions of useand cases of force majeure.

No responsibility will apply except legal requirements regarding product liability. The warranty explicitly excludes all claims exceeding the above conditions.

Geneva, 21 June 2011

François Gabella CEO LEM

Austria and CEE
Eltrotex HandelsgesmbH Grundauerweg 7 A-2500 Baden Tel. +43-2252-47040-0 Fax +43-2252-47040-7 e-mail: office@eltrotex.at LEM Deutschland GmbH, Office Austria
Concorde Business Park 2/F/6 A-2320 Schwechat Tel. +43170656 14-10 Fax +43170656 14-30 e-mail: tbu@lem.com

Belarus and Baltic

Republics

DACPOL Sp. z o.o.
PL-05-500 Piaseczno Tel. +48 227035100
Fax +48227035101 rax +48 e (mail: dacpol@dacpol.com.pl

BeNeLux

LEM Belgium sprl-bvba Egelantierlaan, 2 B-1851 Humbeek
Tel. : +3222703084 Fax : +32 22703085 e-mail : lbe@lem.com
Bosnia, Croatia, Serbia and Slovenia Proteus Electric S.r.l I-34147 Muggia-Aquilinia Tel. +39 040232188 Fax +39 040232440 e-mail:dino.fabiani@ proteuselectric.it

Bulgaria, Hungary

 Ineltron GmbH Hugenottenstr. 30 D-61381 Friedrichsdorf Tel.: +36 703666055 Tel.: +49 (0)6172 598809Fax.+49 (0) 61727593 Fax.:+49 (0)617275933 mail: i.laszlo@ineltron.hu

Argentina
Semak S.A.
Av. Belgrano 1580, 5° Piso AR-1093 BUENOS AIRES AR. +541143812108
Fax +541143837420 e-mail: comex@semak.com.ar

Brazil

AMDS4 Imp. Exp. e Com. de Equip. Elétricos Ltda. Rua Dr. Ulhôa Cintra, 489, Piso Superior, Centro. 13800-061-Moji Mirim-São Paulo Brazil. Tel. +55 19 3806-1950/8509 Fax +55 19 3806-8422 e-mail: jeduardo@amds4.com.br

Czech Republic, Slovakia
PE \& ED, spol. s r.o.
Koblovska 101/23
CZ-71100 Ostrava
Tel +420596239256
Tel. +420 596239256
Fax +420 596239531
Fax +420596239531
Denmark
Motron A/S
Torsoevej 3
DK-8240 Risskov
Tel. +476212 1050
Fax +476212 1051 e-mail: motron@motron.dk

Finland

ETRA Electro
FI-00740 Helsinki
Tel. +358 20765160
Fax +358 207652311
e-mail: markku.soittila@etra.fi
Field Applications Engineer Mr. Pasi Leveälahti Kausantie 668, 17150 Urajärvi Tel. +358505754435 Fax +358 3766714

France

LEM France Sarl
15, avenue Galois F. 92340 Bourg-La-Reine Tel. +33 145364620
Fax +33145360616 e-mail: lfr@lem.com

Germany

LEM Deutschland GmbH
Frankfurter Strasse 74 D-64521 Gross-Gerau Tel. +49615293010
Fax +49615284661 e-mail: info-lde@lem.com

Canada Ontario East
Optimum Components Inc 7750 Birchmount Road Unit 5 CAN-Markham ON L3R OB4 Tel. +1 9054779393 e-mail: mikep@optimumcomponents com
Canada Manitoba West
Canada Manitoba West
William P. Hall Contract Services
7045 NE 137th st.
CAN-Kirkland,
Washington 98034
Tel. +1 4258206216
Fax +1 2063902411

South Africa
Denver Technical Products Ltd.
Denver Technic
P.O. Box 75810
SA-2047 Garden View
Tel. +27 116262023
Fax +27116262009
e-mail: denvertech@pixie.co.za
USA, Canada, Mexico
LEM USA, Inc., Central Office
11665 West Bradley Road
Milwaukee, WI 53224, USA
Toll free: 8002365366
Tel. +1 4143530711
Tel. +1 4143530711
Fax +1 4143530733
Fax +1 4143530733
e-mail: lus@lem.com

Portugal
QEnergia, Lda
Centro Empresarial S. Sebastião Rua de S. Sebastião Lt 11 n. ${ }^{\circ} 10$, Albarraque
2635-448 Rio de Mouro

Portugal

Tel. +351 214309320
Fax +351 214309299
e-mail: qenergia@qenergia.pt
Romania
Calea Plevnei 139B Sector 6
RO-060011 Bucharest
Tel. +40 213102678
Fax +40 213169176
-mail
george.barbalata@syscom18.com

Russia

TVELEM. LLC, Central Office
Str. Staritskoye shosse,15
170040 Tver / Russia
E-mail: tvelem@lem.com,
Scandinavia
LEM Regional
Office Nordic Countries
Regus Tuborg Havn
Tuborg Boulevard 12, 3rd
Tel +4560431953
e-mail: kck@lem.com

Spain

LEM France Sarl
15, avenue Galois
F-92340 Bourg-la-Reine
Tel. +34 938860228
e-mail: slu@lem.com

Sweden

ADIATOR AB
Hälsingegatan 40
SE-11343 Stockholm
Fax +4687291717
e-mail: info@adiator.se

LEM USA East, Greg Parker Toll free: 8002365366 ext. 202 Tel. +1 4145774132
e-mail: gap@lem.com

LEM USA Central, Alan Garcia Toll free: 8002365366 ext. 200 Tel. +1 4145774130 e-mail: afg@lem.com

Switzerland
SIMPEX Electronic AG
Binzackerstrasse 33
H-8622 Wetzikon +41449311030
Fax +41 449311031
e-mail: contact@simpex.ch
LEM International SA
8, Chemin des Aulx, P.O. Box 35,
CH-1228 Plan-les-Ouates
Tel. +41 227061111
-mail: Isa@lem.com

Turkey

Özdisan Electronik Pazarlama
DES Sanayi Sitesi,
104.Sok.A07 Blok ${ }^{\circ}$: 02

TR-34776 Y.Dudullu
Tel. +902164201882
Fax +90 2164663686
-mail: Ozdisan@ozdisan.com

Ukraine

"SP DACPOL" Co Ltd UA-02090, KIEV, UKRAINE Tel. +380445019344 Fax +380 445026487 e-mail: kiev@dacpol.com
United Kingdom and Eire LEM Regional Office UK A Branch of LEM Deutschland GmbH
Nest Lancs Investment Centre
Suite 10, Maple view
Skelmersdale, Lancs WN8 9TG
Tel. +44 (0)1942 388440
Fax +44 (0)1942 38844
e-mail: luk@lem.com

Australia and New Zealand
Fastron Technologies Pty Ltd. 25 Kingsley Close
Victoria 3178
Tel. +61 397635155
e-mail: sales@fastron.com.au
China
LFM Electronics (China) Co., Ltd. No. 28, Linhe Str. Linhe Industrial Development Zone Shunyi District, Beijing, China ost code : 101300 Tel. +861089455288 ax +861080484303
+861080483120 e-mail: bjl@lem.com

LEM Electronics (China) Co., Ltd. Hefei Office, R804.
Qirong Building, No. 502 Wangjiang West Road, High-tech Zone Hefei, Anhui, 230022 P:R: China Tel. +865515309772 Fax +865515309773 e-mail: bj@lem.com

EM Electronics (China) Co., Ltd.
Shanghai Office, R510,
Hualian Development Mansion,
No. 728 Xinhua Road
Changning District
Shanghai, 200052, P.R. China Fax + 862152580881 ax + -mail: bj@
EM Electronics (China) Co., Ltd.
Shenzhen Office
Shennan Avenue, Futian District, Shenzhen 518040 P.R. China
Tel. +8675533340779
$+8675533369609$ Fax +86 75533340780 e-mail: bjl@lem.com LEM Electronics (China) Co., Ltd. Xi‘an Office
R703, Tower B
Jinqiao International Plaza No. 50, Technology Road High-Tech District, Xi'an, Shanxi, 710075 P.R. China Tel. +86 2988337168 ax +86 2988337158
-mail: bil@lem.com

India

LEM Management Services SarlIndia Branch Office
Mr. Sudhir Khandeka
Level 2, Connaught Place,
Bund Garden Road, Pune-411001 Tel. +91 2040147575 Mobil: +9198 321352 e-mail: skh@
No.122, 27th Cross
No.122, 27th Cross, Bangalore-560070 INDIA Tel: +9180 26635776 +918026643375
+918026534020 e-mail: sales@globetek.in

Japan

LEM Japan K.K.
J-194-0021Machida-Tokyo
Tel. +8142725 8151 Fax +81 427288119 e-mail: ljp@lem.com
LEM Japan K.K. Nagoya Sales Office 1-14-24-701 Marunouchi,
Naka-ku, Nagoya

460-0002 Japan
Tel. +81522038065 Fax +8152 2038091

Korea

S\&H TRADING
Rm. 302 Eopmu A-dong, Chungang Yutong, 1258, Gurobon-dong, Guro-gu, Tel. +822268683 l. +8222613 +82 226138345
Fax +8226868347 e-mail: snh@hinodekorea.co.kr Young Woo Ind. Co. \#608 Penterium IT Tower, 282 Hakeui-ro, Dongan-gu, Anyang-si, Gyeonggi-do South Korea, 431-810 Tel. +82 312668856 Fax +82 312668857 e-mail: info@ygwoo.co.kr

ACEI Systems Sdn Bhd 1A \& 1A-1, Lintasan
Perajurit 6,
Taman Perak
31400 Ipoh
Perak Darul Ridzuan, Malaysia

EM USA Midwest, John Marino Toll free: 8002365366 ext. 138 Tel +1 4145774137
-mail: jam@lem.com

LEM USA West, Don Blankenburg
oll free: 8002365366 ext. 206
el. +1 4145774122
-mail: dbl@lem.com

"LEM

LEM International SA

8, Chemin des Aulx, P.O. Box 35
CH-1228 Plan-les-Ouates
Tel. +41 2270611 11, Fax +41 227949478
e-mail: Isa@lem.com; www.lem.com
Publication CAE130621/1

Keep in touch www.lem.com

Distributor

Tel. +60 5547 0761/0771
Fax +605547 1518
e-mail: enquiry@aceisys.com.my

Singapore

Blk 1003, Unit 04-16
Bukit Merah Central
Inno Center
RS-159836 Singapore
Tel. +65 2726077
-mail: info@overseastechnology.coms
Taiwan
POWERTRONICS CO. LTD
The Tapei SUN-TECH Technology Park The Tapei SUN-TECH Technology Park Beixin Road, Xindian City, Taipei County
23143, Taiwan, R. O. C
el. +886 277417000
Fax +886277417001

[^0]: 80

[^1]: 86

